In Silico Identification of Potential Natural Product Inhibitors of Human Proteases Key to SARS-CoV-2 Infection

被引:48
作者
Vivek-Ananth, R. P. [1 ,2 ]
Rana, Abhijit [2 ,3 ]
Rajan, Nithin [1 ]
Biswal, Himansu S. [2 ,3 ]
Samal, Areejit [1 ,2 ]
机构
[1] Inst Math Sci IMSc, Chennai 600113, Tamil Nadu, India
[2] Homi Bhabha Natl Inst HBNI, Mumbai 400094, Maharashtra, India
[3] Natl Inst Sci Educ & Res NISER, Sch Chem Sci, Bhubaneswar 752050, India
来源
MOLECULES | 2020年 / 25卷 / 17期
关键词
COVID-19; TMPRSS2; cathepsin L; molecular docking; molecular dynamics; non-covalent interactions; phytochemical inhibitors; MOLECULAR-DYNAMICS; SILYBUM-MARIANUM; SERINE-PROTEASE; HYDROGEN-BONDS; BINDING; FLOWER; PHYTOCHEMISTRY; PHARMACOLOGY; ETHNOBOTANY; BICUCULLINE;
D O I
10.3390/molecules25173822
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3 alpha,17 alpha-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals
    Simsek, Yusuf
    Baran, Sahra Setenay
    Aslim, Belma
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 109
  • [2] In silico screening of natural antivirals as potential inhibitors of SARS-CoV-2 virus
    Ta Thi Thu Hang
    Do Thi Hong Khanh
    Bui Thanh Tung
    VIETNAM JOURNAL OF CHEMISTRY, 2022, 60 (02) : 211 - 222
  • [3] In Silico Exploration of Potential Natural Inhibitors against SARS-Cov-2 nsp10
    Eissa, Ibrahim H.
    Khalifa, Mohamed M.
    Elkaeed, Eslam B.
    Hafez, Elsayed E.
    Alsfouk, Aisha A.
    Metwaly, Ahmed M.
    MOLECULES, 2021, 26 (20):
  • [4] Flavonoids as potential inhibitors of SARS-CoV-2 infection: in silico study
    Taldaev, A. Kh
    Terekhov, R. P.
    Selivanova, I. A.
    BYULLETEN SIBIRSKOY MEDITSINY, 2022, 21 (01): : 103 - 108
  • [5] In Silico Identification of Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro)
    Hernandez-Serda, Manuel Alejandro
    Vazquez-Valadez, Victor H.
    Aguirre-Vidal, Pablo
    Markarian, Nathan M.
    Medina-Franco, Jose L.
    Cardenas-Granados, Luis Alfonso
    Alarcon-Lopez, Aldo Yoshio
    Martinez-Soriano, Pablo A.
    Velazquez-Sanchez, Ana Maria
    Falfan-Valencia, Rodolfo E.
    Angeles, Enrique
    Abrahamyan, Levon
    PATHOGENS, 2024, 13 (10):
  • [6] In silico approach identified benzoylguanidines as SARS-CoV-2 main protease (Mpro) potential inhibitors
    de Santiago-Silva, Kaio Maciel
    Camargo, Priscila
    da Silva Gomes, Gabriel Felix
    Sotero, Ana Paula
    Orsato, Alexandre
    Perez, Carla Cristina
    Nakazato, Gerson
    da Silva Lima, Camilo Henrique
    Bispo, Marcelle
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (16) : 7686 - 7699
  • [7] A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease
    Elkaeed, Eslam B.
    Eissa, Ibrahim H.
    Elkady, Hazem
    Abdelalim, Ahmed
    Alqaisi, Ahmad M.
    Alsfouk, Aisha A.
    Elwan, Alaa
    Metwaly, Ahmed M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [8] Structure-based identification of potential SARS-CoV-2 main protease inhibitors
    Khan, Shama
    Fakhar, Zeynab
    Hussain, Afzal
    Ahmad, Aijaz
    Jairajpuri, Deeba Shamim
    Alajmi, Mohamed F.
    Hassan, Md. Imtaiyaz
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (08) : 3595 - 3608
  • [9] Triterpene Derivatives as Potential Inhibitors of the RBD Spike Protein from SARS-CoV-2: An In Silico Approach
    Avelar, Mayra
    Pedraza-Gonzalez, Laura
    Sinicropi, Adalgisa
    Flores-Morales, Virginia
    MOLECULES, 2023, 28 (05):
  • [10] Targeting the SARS-CoV-2 Main Protease: In Silico Study Contributed to Exploring Potential Natural Compounds as Candidate Inhibitors
    Ounissi, Mourad
    Rachedi, Fatma Zohra
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2022, 21 (06): : 663 - 682