Solution-based processing of Cu(In,Ga)Se2 absorber layers for 11% efficiency solar cells via a metallic intermediate

被引:22
作者
Berner, Ulrich [1 ,2 ]
Widenmeyer, Markus [1 ]
机构
[1] Robert Bosch GmbH, Corp Sector Res & Adv Engn Appl Res Chem CR ARC, D-70839 Gerlingen, Germany
[2] Univ Luxembourg, Phys & Mat Sci Res Unit, L-4422 Belvaux, Luxembourg
来源
PROGRESS IN PHOTOVOLTAICS | 2015年 / 23卷 / 10期
关键词
CIGS solar cells; true solution; liquid film coating; in situ XRD; carbon free;
D O I
10.1002/pip.2546
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, a low cost solution-based method for the deposition of uniform Cu-In-Ga layers compatible with roll-to-roll processing is described. As ink system we use metal carboxylates dissolved in a mixture of a nitrogen containing base and an alcohol. This solution can be coated homogeneously under inert atmosphere using a doctor blade technique. With this method and appropriate precursor concentrations, crack-free metal layers with dry-film thicknesses of more than 700 nm can be deposited in one fast step. For the controlled film formation during the drying of the solvents a flow channel has been used to improve the evaporative mass transport and the convective gas flows of any unwanted organic species. Due to the absence of organic binders with high molecular weight, this step allows the formation of virtually pure metal layers. Elementary analyses of the dried thin films reveal less than 5 wt% of carbon residues at 200 degrees C. In situ X-ray diffraction data of the drying step show the formation of Cu-In-Ga alloys. The subsequent processing of Cu(In,Ga)Se-2 chalcopyrites with evaporated elemental selenium takes place in a separate tube oven under inert atmosphere. Photoelectric measurements of cells with CdS buffer and ZnO window layer reveal a short-circuit current of 29 mA/cm(2), an open-circuit voltage of 533 mV, and a fill factor of 0.69 under standard conditions. Thus efficiencies of up to 11% on 0.5 cm(2) area without antireflective coating have been achieved. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1260 / 1266
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 1996, ASM BIN ALL PHAS DIA
[2]   Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks [J].
Guo, Qijie ;
Ford, Grayson M. ;
Agrawal, Rakesh ;
Hillhouse, Hugh W. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :64-71
[3]   Influence of an additional carbon layer at the back contact-absorber interface in Cu(In,Ga)Se2 thin film solar cells [J].
Haug, Veronika ;
Quintilla, Aina ;
Klugius, Ines ;
Ahlswede, Erik .
THIN SOLID FILMS, 2011, 519 (21) :7464-7467
[4]   Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% [J].
Jackson, Philip ;
Hariskos, Dimitrios ;
Wuerz, Roland ;
Wischmann, Wiltraud ;
Powalla, Michael .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (03) :219-222
[5]   Low-cost CIGS solar cells by paste coating and selenization [J].
Kaelin, M ;
Rudmann, D ;
Kurdesau, F ;
Zogg, H ;
Meyer, T ;
Tiwari, AN .
THIN SOLID FILMS, 2005, 480 :486-490
[6]   Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks [J].
Kapur, VK ;
Bansal, A ;
Le, P ;
Asensio, OI .
THIN SOLID FILMS, 2003, 431 :53-57
[7]  
Purwins M, 2002, P 21 EU PVSEC, V2006
[8]   Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell [J].
Todorov, Teodor K. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Mitzi, David B. .
PROGRESS IN PHOTOVOLTAICS, 2013, 21 (01) :82-87
[9]   Cu(In,Ga)Se2 absorbers from stacked nanoparticle precursor layers [J].
Uhl, A. R. ;
Koller, M. ;
Wallerand, A. S. ;
Fella, C. M. ;
Kranz, L. ;
Hagendorfer, H. ;
Romanyuk, Y. E. ;
Tiwari, A. N. ;
Yoon, S. ;
Weidenkaff, A. ;
Friedlmeier, T. M. ;
Ahlswede, E. ;
VanGenechten, D. ;
Stassin, F. .
THIN SOLID FILMS, 2013, 535 :138-142
[10]   8.01% CuInGaSe2 solar cells fabricated by air-stable low-cost inks [J].
Wang, Wei ;
Han, Seung-Yeol ;
Sung, Shi-Joon ;
Kim, Dae-Hwan ;
Chang, Chih-Hung .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (31) :11154-11159