Solvation of Hydrogen Sulfide in Liquid Water and at the Water-Vapor Interface Using a Polarizable Force Field

被引:30
作者
Riahi, Saleh [1 ]
Rowley, Christopher N. [1 ]
机构
[1] Mem Univ Newfoundland, Dept Chem, St John, NF A1B 3X7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; TEMPERATURE-DEPENDENCE; AIR/WATER INTERFACE; SURFACE-TENSION; MODEL; ADSORPTION; HYDRATION; IONS; DIFFUSION; TRANSPORT;
D O I
10.1021/jp4096198
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics (MD) simulations using the Drude polarizable force field are used to study the solution and interfacial properties of hydrogen sulfide (H2S) in water. Pairwise H2O-H2S Lennard-Jones interactions were optimized to the experimental H2S gas solubility at 298 K. These parameters yield hydration free energies and diffusion coefficients for H2S that are in good agreement with the experiment over 273-323 K and 298-368 K, respectively. H2S is sparingly soluble in water, with a Delta G(hydr)degrees of -0.5 kcal mol(-1). The free energy perturbation (FEP) calculations and analysis of the radial distribution functions show that H2S has limited hydrogen bonding and electrostatic interactions with the water solvent and generally behaves like a hydrophobic solute. These features were confirmed by ab initio MD simulations. Umbrella sampling simulations were used to calculate the free energy profile of the transition of H2S across the water-vapor interface, which showed that H2S has a sizable surface excess, with a Delta G(surf) of 1.3 kcal mol(-1). This high surface excess is consistent with our calculations of the surface tension, which decreases to 20 dyn cm(-1) under high densities of H2S (g). The dipole moment of H2S increases from its gas phase value of 0.98 to 1.25 D in bulk water as it moves across the interface. Adsorbed H2S tends to be oriented perpendicular to the interface, with the sulfur atom pointing toward the vapor phase.
引用
收藏
页码:1373 / 1380
页数:8
相关论文
共 69 条
[1]  
Abraham M. H, 1984, J CHEM SOC F1, V80, P153
[2]  
Allen M. P., 1989, Computer Simulation of Liquids, DOI DOI 10.1007/BF00646086
[3]   Polarizable empirical force field for the primary and secondary alcohol series based on the classical drude model [J].
Anisimov, Victor M. ;
Vorobyov, Igor V. ;
Roux, Benoit ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2007, 3 (06) :1927-1946
[4]   Attraction of iodide ions by the free water surface, revealed by simulations with a polarizable force field based on drude oscillators [J].
Archontis, G ;
Leontidis, E ;
Andreou, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (38) :17957-17966
[5]   Accurate Calculation of Hydration Free Energies using Pair-Specific Lennard-Jones Parameters in the CHARMM Drude Polarizable Force Field [J].
Baker, Christopher M. ;
Lopes, Pedro E. M. ;
Zhu, Xiao ;
Roux, Benoit ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) :1181-1198
[6]   THE INTERATOMIC STRUCTURE OF ARGON IN WATER [J].
BROADBENT, RD ;
NEILSON, GW .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7543-7547
[7]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[8]   Molecular dynamics simulations of CCl4-H2O liquid-liquid interface with polarizable potential models [J].
Chang, TM ;
Dang, LX .
JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (17) :6772-6783
[9]   A Polarizable Force Field of Dipalmitoylphosphatidylcholine Based on the Classical Drude Model for Molecular Dynamics Simulations of Lipids [J].
Chowdhary, Janamejaya ;
Harder, Edward ;
Lopes, Pedro E. M. ;
Huang, Lei ;
MacKerell, Alexander D., Jr. ;
Roux, Benoit .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (31) :9142-9160
[10]   AQUEOUS NONELECTROLYTE SOLUTIONS .8. DEUTERIUM AND HYDROGEN SULFIDES SOLUBILITIES IN DEUTERIUM OXIDE AND WATER [J].
CLARKE, ECW ;
GLEW, DN .
CANADIAN JOURNAL OF CHEMISTRY, 1971, 49 (05) :691-&