共 50 条
Proteolytically activated anti-bacterial hydrogel microspheres
被引:16
作者:
Buhrman, Jason S.
[1
]
Cook, Laura C.
[2
]
Rayahin, Jamie E.
[1
]
Federle, Michael J.
[2
]
Gemeinhart, Richard A.
[1
,3
,4
]
机构:
[1] Univ Illinois, Dept Biopharmaceut Sci, Chicago, IL 60612 USA
[2] Univ Illinois, Ctr Pharmaceut Biotechnol, Dept Med Chem & Pharmacognosy, Chicago, IL 60607 USA
[3] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[4] Univ Illinois, Dept Ophthalmol & Visual Sci, Chicago, IL 60612 USA
基金:
美国国家卫生研究院;
关键词:
Recombinant protein;
Glutathione s-transferase;
Glutathione;
Thrombin;
Hydrogel;
Microparticles;
GLUTATHIONE-S-TRANSFERASE;
THERMODYNAMIC ANALYSIS;
SCHISTOSOMA-JAPONICUM;
ESCHERICHIA-COLI;
US HOSPITALS;
TRYPAN BLUE;
CELL-LINES;
RELEASE;
SYSTEM;
BLOOD;
D O I:
10.1016/j.jconrel.2013.06.023
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Hydrogels are finding increased clinical utility as advances continue to exploit their favorable material properties. Hydrogels can be adapted for many applications, including surface coatings and drug delivery. Anti-infectious surfaces and delivery systems that actively destroy invading organisms are alternative ways to exploit the favorable material properties offered by hydrogels. Sterilization techniques are commonly employed to ensure the materials are non-infectious upon placement, but sterilization is not absolute and infections are still expected. Natural, anti-bacterial proteins have been discovered which have the potential to act as anti-infectious agents; however, the proteins are toxic and need localized release to have therapeutic efficacy without toxicity. In these studies, we explore the use of the glutathione s-transferase (GST) to anchor the bactericidal peptide, melittin, to the surface of poly(ethylene glycol) diacrylate (PEGDA) hydrogel microspheres. We show that therapeutic levels of protein can be anchored to the surface of the microspheres using the GST anchor. We compared the therapeutic efficacy of recombinant melittin released from PEGDA microspheres to melittin. We found that, when released by an activating enzyme, thrombin, recombinant melittin efficiently inhibits growth of the pathogenic bacterium Streptococcus pyogenes as effectively as melittin created by solid phase peptide synthesis. We conclude that a GST protein anchor can be used to immobilize functional protein to PEGDA microspheres and the protein will remain immobilized under physiological conditions until the protein is enzymatically released. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:288 / 295
页数:8
相关论文