The secondary structure of apolipoprotein A-I on 9.6-nm reconstituted high-density lipoprotein determined by EPR spectroscopy

被引:16
|
作者
Oda, Michael N. [1 ]
Budamagunta, Madhu S. [2 ]
Borja, Mark S. [1 ]
Petrlova, Jitka [3 ]
Voss, John C. [2 ]
Lagerstedt, Jens O. [3 ]
机构
[1] Childrens Hosp Oakland Res Inst, Oakland, CA USA
[2] Univ Calif Davis, Dept Biochem & Mol Med, Davis, CA 95616 USA
[3] Lund Univ, Dept Expt Med Sci, S-22184 Lund, Sweden
基金
瑞典研究理事会;
关键词
apolipoproteinA-I (ApoA-I); cardiovascular; cholesterol; EPR spectroscopy; high-density lipoprotein (HDL); LECITHIN-CHOLESTEROL ACYLTRANSFERASE; PARAMAGNETIC-RESONANCE SPECTROSCOPY; CRYSTAL-STRUCTURE; APOA-I; MASS-SPECTROMETRY; TERMINAL DOMAIN; N-TERMINUS; SITE; HDL; CONFORMATION;
D O I
10.1111/febs.12334
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ApolipoproteinA-I (ApoA-I) is the major protein component of high-density lipoprotein (HDL), and is critical for maintenance of cholesterol homeostasis. During reverse cholesterol transport, HDL transitions between an array of subclasses, differing in size and composition. This process requires ApoA-I to adapt to changes in the shape of the HDL particle, transiting from an apolipoprotein to a myriad of HDL subclass-specific conformations. Changes in ApoA-I structure cause alterations in HDL-specific enzyme and receptor-binding properties, and thereby direct the HDL particle through the reverse cholesterol transport pathway. In this study, we used site-directed spin label spectroscopy to examine the conformational details of the ApoA-I central domain on HDL. The motional dynamics and accessibility to hydrophobic/hydrophilic relaxation agents of ApoA-I residues99-163 on 9.6-nm reconstituted HDL was analyzed by EPR. In previous analyses, we examined residues6-98 and 164-238 (of ApoA-I's 243 residues), and combining these findings with the current results, we have generated a full-length map of the backbone structure of reconstituted HDL-associated ApoA-I. Remarkably, given that the majority of ApoA-I's length is composed of amphipathic helices, we have identified nonhelical residues, specifically the presence of a -strand (residues149-157). The significance of these nonhelical residues is discussed, along with the other features, in the context of ApoA-I function in contrast to recent models derived by other methods.
引用
收藏
页码:3416 / 3424
页数:9
相关论文
共 50 条
  • [1] Tertiary structure of apolipoprotein A-I in nascent high-density lipoproteins
    Pourmousa, Mohsen
    Song, Hyun D.
    He, Yi
    Heinecke, Jay W.
    Segrest, Jere P.
    Pastor, Richard W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (20) : 5163 - 5168
  • [2] High-density lipoprotein subclasses and apolipoprotein A-I
    Duriez, P
    Fruchart, JC
    CLINICA CHIMICA ACTA, 1999, 286 (1-2) : 97 - 114
  • [3] Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I
    Bibow, Stefan
    Polyhach, Yevhen
    Eichmann, Cedric
    Chi, Celestine N.
    Kowal, Julia
    Albiez, Stefan
    McLeod, Robert A.
    Stahlberg, Henning
    Jeschke, Gunnar
    Guntert, Peter
    Riek, Roland
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (02) : 187 - +
  • [4] Lipid exchange of apolipoprotein A-I amyloidogenic variants in reconstituted high-density lipoprotein with artificial membranes
    Correa, Yubexi
    Ravel, Mathilde
    Imbert, Marie
    Waldie, Sarah
    Clifton, Luke
    Terry, Ann
    Roosen-Runge, Felix
    Lagerstedt, Jens O.
    Moir, Michael
    Darwish, Tamim
    Cardenas, Marite
    Del Giudice, Rita
    PROTEIN SCIENCE, 2024, 33 (05)
  • [5] Differential impact of glycation on apolipoprotein A-I of high-density lipoprotein: a review
    Maarfi, Farah
    Ahmad, Saheem
    Alouffi, Sultan
    Akasha, Rihab
    Khan, M. Salman
    Rafi, Zeeshan
    Basnet, Hemashri
    Khan, Mohd Yasir
    GLYCOBIOLOGY, 2023, 33 (06) : 442 - 453
  • [6] Apolipoprotein A-I mimetics and high-density lipoprotein function
    Gordon, Scott M.
    Davidson, William S.
    CURRENT OPINION IN ENDOCRINOLOGY DIABETES AND OBESITY, 2012, 19 (02) : 109 - 114
  • [7] Interactions of Apolipoprotein A-I with High-Density Lipoprotein Particles
    Nguyen, David
    Nickel, Margaret
    Mizuguchi, Chiharu
    Saito, Hiroyuki
    Lund-Katz, Sissel
    Phillips, Michael C.
    BIOCHEMISTRY, 2013, 52 (11) : 1963 - 1972
  • [8] Thermal Stability of Apolipoprotein A-I in High-Density Lipoproteins by Molecular Dynamics
    Jones, Martin K.
    Catte, Andrea
    Patterson, James C.
    Gu, Feifei
    Chen, Jianguo
    Li, Ling
    Segrest, Jere P.
    BIOPHYSICAL JOURNAL, 2009, 96 (02) : 354 - 371
  • [9] A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein
    Gu, Xiaodong
    Wu, Zhiping
    Huang, Ying
    Wagner, Matthew A.
    Baleanu-Gogonea, Camelia
    Mehl, Ryan A.
    Buffa, Jennifer A.
    DiDonato, Anthony J.
    Hazen, Leah B.
    Fox, Paul L.
    Gogonea, Valentin
    Parks, John S.
    DiDonato, Joseph A.
    Hazen, Stanley L.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (12) : 6386 - 6395
  • [10] Apolipoprotein A-I helical structure and stability in discoidal high-density lipoprotein (HDL) particles by hydrogen exchange and mass spectrometry
    Chetty, Palaniappan Sevugan
    Mayne, Leland
    Kan, Zhong-Yuan
    Lund-Katz, Sissel
    Englander, S. Walter
    Phillips, Michael C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) : 11687 - 11692