Programmable photonic circuits

被引:772
作者
Bogaerts, Wim [1 ,2 ]
Perez, Daniel [3 ,4 ]
Capmany, Jose [3 ,4 ]
Miller, David A. B. [5 ]
Poon, Joyce [6 ,7 ]
Englund, Dirk [8 ]
Morichetti, Francesco [9 ]
Melloni, Andrea [9 ]
机构
[1] Univ Ghent, Dept Informat Technol, IMEC, Ghent, Belgium
[2] Univ Ghent, Ctr Nano & Biophoton, Ghent, Belgium
[3] Univ Politecn Valencia, ITEAM Res Inst, Valencia, Spain
[4] Programmable Photon, iPronics, Valencia, Spain
[5] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[6] Max Planck Inst Microstruct Phys, Halle, Germany
[7] Univ Toronto, Edward S Rogers Dept Elect & Comp Engn, Toronto, ON, Canada
[8] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[9] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Milan, Italy
基金
欧洲研究理事会;
关键词
SILICON PHOTONICS; WAVE-GUIDE; INTEGRATED-CIRCUIT; HEATERS; OPTICS; ACCESS; CHIP;
D O I
10.1038/s41586-020-2764-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication. The current state of programmable photonic integrated circuits is discussed, including recent developments in their building blocks, circuit architectures, electronic control and programming strategies, as well as different application spaces.
引用
收藏
页码:207 / 216
页数:10
相关论文
共 120 条
  • [1] Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon
    Abel, Stefan
    Eltes, Felix
    Ortmann, J. Elliott
    Messner, Andreas
    Castera, Pau
    Wagner, Tino
    Urbonas, Darius
    Rosa, Alvaro
    Gutierrez, Ana M.
    Tulli, Domenico
    Ma, Ping
    Baeuerle, Benedikt
    Josten, Arne
    Heni, Wolfgang
    Caimi, Daniele
    Czornomaz, Lukas
    Demkov, Alexander A.
    Leuthold, Juerg
    Sanchis, Pablo
    Fompeyrine, Jean
    [J]. NATURE MATERIALS, 2019, 18 (01) : 42 - +
  • [2] Nanophotonic Pockels modulators on a silicon nitride platform
    Alexander, Koen
    George, John P.
    Verbist, Jochem
    Neyts, Kristiaan
    Kuyken, Bart
    Van Thourhout, Dries
    Beeckman, Jeroen
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [3] Annoni A., 2016, J SEL TOPICS QUANTUM, V22, P169
  • [4] Unscrambling light-automatically undoing strong mixing between modes
    Annoni, Andrea
    Guglielmi, Emanuele
    Carminati, Marco
    Ferrari, Giorgio
    Sampietro, Marco
    Miller, David A. B.
    Melloni, Andrea
    Morichetti, Francesco
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e17110 - e17110
  • [5] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [6] Baudot C, 2017, 2017 IEEE INT EL DEV, P765
  • [7] Lidar System Architectures and Circuits
    Behroozpour, Behnam
    Sandborn, Phillip A. M.
    Wu, Ming C.
    Boser, Bernhard E.
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (10) : 135 - 142
  • [8] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [9] Bogaerts W., 2020, IEEE J SEL TOP QUANT, V26, P1
  • [10] On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing
    Burla, Maurizio
    Marpaung, David
    Zhuang, Leimeng
    Roeloffzen, Chris
    Khan, Muhammad Rezaul
    Leinse, Arne
    Hoekman, Marcel
    Heideman, Rene
    [J]. OPTICS EXPRESS, 2011, 19 (22): : 21475 - 21484