Performance of Selected Nonparametric Tests for Discrete Longitudinal Data Under Different Patterns of Missing Data

被引:1
作者
Chirwa, T. F. [1 ]
Bogaerts, J. [2 ]
Chirwa, E. D. [1 ]
Kazembe, L. N. [1 ]
机构
[1] Chancellor Coll, Dept Math Sci, Appl Stat & Epidemiol Res Grp, Zomba, Malawi
[2] EORTC, Brussels, Belgium
关键词
Informative; MAR; MCAR; Nonparametric tests; Simulations; Wilcoxon; QUALITY-OF-LIFE; DROPOUTS; CANCER; PROGRAM; TRIALS;
D O I
10.1080/10543400802536248
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Comparison of changes over time of a continuous response variable between treatment groups is often of main interest in clinical trials. When the distributional properties of the continuous response variable are not regular enough, or when the response is discrete, nonparametric techniques have been used. The relative performances of selected repeated measures nonparametric two-sample tests proposed by Wei and Lachin, Koziol, Wei and Johnson, and the adapted Wilcoxon Rank-Sum test are compared through simulations based on quality of life data. The Wilcoxon Rank-Sum test is the most powerful and is not significantly affected by the different patterns of missing data.
引用
收藏
页码:190 / 203
页数:14
相关论文
共 50 条
  • [41] A Bayesian approach for clustered longitudinal ordinal outcome with nonignorable missing data: Evaluation of an asthma education program
    Kaciroti, Niko A.
    Raghunathan, Trivellore E.
    Schork, M. Anthony
    Clark, Noreen M.
    Gong, Molly
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 435 - 446
  • [42] Clinical and Molecular Findings After Autologous Stem Cell Transplantation or Cyclophosphamide for Scleroderma: Handling Missing Longitudinal Data
    Keyes-Elstein, Lynette
    Pinckney, Ashley
    Goldmuntz, Ellen
    Welch, Beverly
    Franks, Jennifer M.
    Martyanov, Viktor
    Wood, Tammara A.
    Crofford, Leslie
    Mayes, Maureen
    McSweeney, Peter
    Nash, Richard
    Georges, George
    Csuka, M. E.
    Simms, Robert
    Furst, Daniel
    Khanna, Dinesh
    St Clair, E. William
    Whitfield, Michael L.
    Sullivan, Keith M.
    ARTHRITIS CARE & RESEARCH, 2023, 75 (02) : 307 - 316
  • [43] A new cure model accounting for longitudinal data and flexible patterns of hazard ratios over time
    Xie, Can
    Huang, Xuelin
    Li, Ruosha
    Shen, Yu
    Short, Nicholas J.
    Bhalla, Kapil N.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2025,
  • [45] Bayesian sensitivity analyses for longitudinal data with dropouts that are potentially missing not at random: A high dimensional pattern-mixture mode
    Kaciroti, Niko A.
    Little, Roderick J. A.
    STATISTICS IN MEDICINE, 2021, 40 (21) : 4609 - 4628
  • [46] Using multiple imputation to deal with missing data and attrition in longitudinal studies with repeated measures of patient-reported outcomes
    Biering, Karin
    Hjollund, Niels Henrik
    Frydenberg, Morten
    CLINICAL EPIDEMIOLOGY, 2015, 7 : 91 - 106
  • [47] Multidimensional longitudinal data: Estimating a treatment effect from continuous, discrete, or time-to-event response variables
    Gray, SM
    Brookmeyer, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (450) : 396 - 406
  • [48] Some performance considerations when using multi-armed bandit algorithms in the presence of missing data
    Chen, Xijin
    Lee, Kim May
    Villar, Sofia S.
    Robertson, David S.
    PLOS ONE, 2022, 17 (09):
  • [49] HOW TO IDENTIFY SUBGROUPS IN LONGITUDINAL CLINICAL DATA: TREATMENT RESPONSE PATTERNS IN PATIENTS WITH A SHORTENED DENTAL ARCH
    Schierz, Oliver
    Lee, Chi Hyun
    John, Mike T.
    Rauch, Angelika
    Reissmann, Daniel R.
    Kohal, Ralf
    Marre, Birgit
    Boening, Klaus
    Walter, Michael H.
    Luthardt, Ralph Gunnar
    Rudolph, Heike
    Mundt, Torsten
    Hannak, Wolfgang
    Heydecke, Guido
    Kern, Matthias
    Hartmann, Sinsa
    Boldt, Julian
    Stark, Helmut
    Edelhoff, Daniel
    Woestmann, Bernd
    Wolfart, Stefan
    Jahn, Florentine
    JOURNAL OF EVIDENCE-BASED DENTAL PRACTICE, 2023, 23 (01)
  • [50] Retrospectively Collected EQ-5D-5L Data as Valid Proxies for Imputing Missing Information in Longitudinal Studies
    Rajan, Suja S.
    Wang, Mengxi
    Singh, Noopur
    Jacob, Asha P.
    Parker, Stephanie A.
    Czap, Alexandra L.
    Bowry, Ritvij
    Grotta, James C.
    Yamal, Jose-Miguel
    VALUE IN HEALTH, 2021, 24 (12) : 1720 - 1727