Lithium vacancy migration in Li2O2: From first principles studies

被引:7
作者
Gan, Zuoliang [1 ]
Lei, Xueling [1 ]
Wu, Wenjun [1 ]
Zhong, Shuying [1 ]
机构
[1] Jiangxi Normal Univ, Dept Phys, Lab Computat Mat Phys, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-vacancy diffusion; Lithium peroxide; Energy storage; Li-O-2; batteries; First-principle calculations; CHARGE-TRANSPORT; OXYGEN BATTERIES; AIR BATTERIES; CONDUCTIVITY; LIMITATIONS; CHALLENGES; SURFACES; KINETICS; POINTS;
D O I
10.1016/j.commatsci.2020.109873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Li ion diffusion in the discharge products (Li2O2) of the Li-O-2 batteries is relevant to the performance of the battery. In this paper, Li-vacancy migration in the bulk and at the surfaces of Li2O2 are studied from first principles calculations. Three low index surfaces (0001), (11 (2) over bar0) and (1 (2) over bar 00) are considered. Results show that Li vacancy migration in the Li1(2)O(2) bulk is slow with the energy barrier of 0.41 eV. On the other hand, it is found that Li-vacancy migration on the (0001) and (11 over bar 00) surface is very difficult with the high migration energy barriers of 1.22 eV and 1.06 eV, respectively, while on the (112 over bar 0) surface, Li-vacancy migration is fast with the low energy barrier of 0.34 eV. Moreover, the formation energy of Li-vacancy on the (112 over bar 0) surface is 2.65 eV, suggesting that the formation of Li-vacancy is the bottleneck for creating fast enough Li diffusion at the Li2O2 (11 (2) over bar0) surface. These results will provide the fundamental understanding of Li ion diffusion in the discharge products of the Li-O-2 battery.
引用
收藏
页数:6
相关论文
共 41 条
[1]   Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling [J].
Albertus, Paul ;
Girishkumar, G. ;
McCloskey, Bryan ;
Sanchez-Carrera, Roel S. ;
Kozinsky, Boris ;
Christensen, Jake ;
Luntz, A. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A343-A351
[2]   A critical review on lithium-air battery electrolytes [J].
Balaish, Moran ;
Kraytsberg, Alexander ;
Ein-Eli, Yair .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (07) :2801-2822
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Effect of halogen dopants on the properties of Li2O2: is chloride special? [J].
Cortes, Henry A. ;
Vildosola, Veronica L. ;
Andrea Barral, Maria ;
Corti, Horacio R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (25) :16924-16931
[5]   Defect Chemistry in Discharge Products of Li-O2 Batteries [J].
Dai, Wenrui ;
Cui, Xinhang ;
Zhou, Yin ;
Zhao, Yong ;
Wang, Li ;
Peng, Luming ;
Chen, Wei .
SMALL METHODS, 2019, 3 (03)
[6]   High energy lithium-oxygen batteries - transport barriers and thermodynamics [J].
Das, Shyamal K. ;
Xu, Shaomao ;
Emwas, Abdul-Hamid ;
Lu, Ying Ying ;
Srivastava, Samanvaya ;
Archer, Lynden A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :8927-8931
[7]   Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2-the discharge product in lithium-air batteries [J].
Dunst, A. ;
Epp, V. ;
Hanzu, I. ;
Freunberger, S. A. ;
Wilkening, M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2739-2752
[8]   DIE KRISTALLSTRUKTUREN DER ALKALIPEROXYDE [J].
FOPPL, H .
ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1957, 291 (1-4) :12-50
[9]   Quantifying the promise of lithium-air batteries for electric vehicles [J].
Gallagher, Kevin G. ;
Goebel, Steven ;
Greszler, Thomas ;
Mathias, Mark ;
Oelerich, Wolfgang ;
Eroglu, Damla ;
Srinivasan, Venkat .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1555-1563
[10]   Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries [J].
Gallant, Betar M. ;
Kwabi, David G. ;
Mitchell, Robert R. ;
Zhou, Jigang ;
Thompson, Carl V. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2518-2528