Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley

被引:26
作者
Kristo, P [1 ]
Saarelainen, R [1 ]
Fagerstrom, R [1 ]
Aho, S [1 ]
Korhola, M [1 ]
机构
[1] ALKO LTD,RES LABS,SF-00101 HELSINKI,FINLAND
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1996年 / 237卷 / 01期
关键词
xylose isomerase; barley protein; isomerase cDNA; isomerase gene;
D O I
10.1111/j.1432-1033.1996.0240n.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The first eukaryotic xylose isomerase protein was purified from barley Hordeum vulgare. The enzyme requires Mn2+ for its activity and is fairly thermostable, with the optimum temperature being 60 degrees C. It showed maximum activity over a broad pH range (7.0-9.0). The molecular mass of the monomer was about 50000 Da based on the SDS/PAGE, and the calculated value from the cDNA-deduced polypeptide sequence was 53 620 Da. A relative mass estimation of 100000 Da was obtained from the Superose 12 chromatography, suggesting that the barley enzyme is a dimer. The cloned corresponding cDNA sequence of 1710 nucleotides encoded a polypeptide of 480 amino acids. The genomic sequence of 4473 nucleotides, revealed that the isomerase gene contained 20 introns, all starting with GT and ending with AG. One large intron was located in the 5'untranslated region. The barley isomerase has an insertion of about 40 residues at its amino terminus when compared to the prokaryotic cluster (family) II isomerases; cluster (family) I and cluster (family) II isomerases vary from the former in an insertion of around 50 residues at their amino termini. Comparison of the barley protein with the prokaryotic isomerases shows that the conserved catalytic and metal binding regions are also well conserved in barley.
引用
收藏
页码:240 / 246
页数:7
相关论文
共 22 条
[1]   ISOTOPIC EXCHANGE PLUS SUBSTRATE AND INHIBITION-KINETICS OF D-XYLOSE ISOMERASE DO NOT SUPPORT A PROTON-TRANSFER MECHANISM [J].
ALLEN, KN ;
LAVIE, A ;
FARBER, GK ;
GLASFELD, A ;
PETSKO, GA ;
RINGE, D .
BIOCHEMISTRY, 1994, 33 (06) :1481-1487
[2]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[3]   IDENTIFICATION OF ESSENTIAL HISTIDINE-RESIDUES IN THE ACTIVE-SITE OF ESCHERICHIA-COLI XYLOSE (GLUCOSE) ISOMERASE [J].
BATT, CA ;
JAMIESON, AC ;
VANDEYAR, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (02) :618-622
[4]   CATALYTIC PROPERTIES OF D-XYLOSE ISOMERASE FROM STREPTOMYCES-VIOLACEORUBER [J].
CALLENS, M ;
KERSTERSHILDERSON, H ;
VANOPSTAL, O ;
DEBRUYNE, CK .
ENZYME AND MICROBIAL TECHNOLOGY, 1986, 8 (11) :696-700
[5]   X-RAY-ANALYSIS OF D-XYLOSE ISOMERASE AT 1.9 A - NATIVE ENZYME IN COMPLEX WITH SUBSTRATE AND WITH A MECHANISM-DESIGNED INACTIVATOR [J].
CARRELL, HL ;
GLUSKER, JP ;
BURGER, V ;
MANFRE, F ;
TRITSCH, D ;
BIELLMANN, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (12) :4440-4444
[6]   METABOLISM OF D-XYLOSE IN SCHIZOSACCHAROMYCES-POMBE CLONED WITH A XYLOSE ISOMERASE GENE [J].
CHAN, EC ;
UENG, PP ;
CHEN, LF .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 31 (5-6) :524-528
[7]  
CRUEGER W, 1982, ENZYMES BIOTECHNOLOG, P161
[8]  
Dellaporta S.L., 1983, Plant Mol. Biol. Rep, V1, P19, DOI DOI 10.1007/BF02712670
[9]   CRYSTALLOGRAPHIC STUDIES OF THE MECHANISM OF XYLOSE ISOMERASE [J].
FARBER, GK ;
GLASFELD, A ;
TIRABY, G ;
RINGE, D ;
PETSKO, GA .
BIOCHEMISTRY, 1989, 28 (18) :7289-7297
[10]  
FROHMAN MA, 1990, RACE RAPID AMPLIFICA, P28