Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array

被引:21
作者
Abbott, Jeffrey [1 ,2 ,3 ]
Ye, Tianyang [1 ]
Krenek, Keith [1 ]
Gertner, Rona S. [2 ]
Wu, Wenxuan [1 ]
Jung, Han Sae [1 ]
Ham, Donhee [1 ]
Park, Hongkun [2 ,3 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
MICROELECTRODE ARRAY; STIMULATION; CONNECTIVITY; TRANSISTOR; PLATFORM; CELLS;
D O I
10.1039/d0lc00553c
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The synaptic connections between neurons are traditionally determined by correlating the action potentials (APs) of a pre-synaptic neuron and small-amplitude subthreshold potentials of a post-synaptic neuron using invasive intracellular techniques, such as patch clamping. Extracellular recording by a microelectrode array can non-invasively monitor network activities of a large number of neurons, but its reduced sensitivity usually prevents direct measurements of synaptic signals. Here, we demonstrate that a newly developed complementary metal-oxide-semiconductor (CMOS) nanoelectrode array (CNEA) is capable of extracellularly determining direct synaptic connections in dense, multi-layer cultures of dissociated rat neurons. We spatiotemporally correlate action potential signals of hundreds of active neurons, detect small (similar to 1 pA after averaging) extracellular synaptic signals at the region where pre-synaptic axons and post-synaptic dendrites/somas overlap, and use those signals to map synaptic connections. We use controlled stimulation to assess stimulation-dependent synaptic strengths and to titrate a synaptic blocker (CNQX: IC50 similar to 1 mu M). The new capabilities demonstrated here significantly enhance the utilities of CNEAs in connectome mapping and drug screening applications.
引用
收藏
页码:3239 / 3248
页数:10
相关论文
共 45 条
[1]   A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons [J].
Abbott, Jeffrey ;
Ye, Tianyang ;
Krenek, Keith ;
Gertner, Rona S. ;
Ban, Steven ;
Kim, Youbin ;
Qin, Ling ;
Wu, Wenxuan ;
Park, Hongkun ;
Ham, Donhee .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (02) :232-241
[2]  
Abbott J, 2017, NAT NANOTECHNOL, V12, P460, DOI [10.1038/nnano.2017.3, 10.1038/NNANO.2017.3]
[3]   FUNCTIONAL CHARACTERISTICS OF UNMYELINATED FIBERS IN HIPPOCAMPAL CORTEX [J].
ANDERSEN, P ;
SILFVENIUS, H ;
SUNDBERG, SH ;
SVEEN, O ;
WIGSTROM, H .
BRAIN RESEARCH, 1978, 144 (01) :11-18
[4]   EFFECTS OF NEW NON-N-METHYL-D-ASPARTATE ANTAGONISTS ON SYNAPTIC TRANSMISSION IN THE INVITRO RAT HIPPOCAMPUS [J].
ANDREASEN, M ;
LAMBERT, JDC ;
JENSEN, MS .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 414 :317-336
[5]  
[Anonymous], 2012, NAT NANOTECHNOL, DOI DOI 10.1038/NNANO.2011.249
[6]  
[Anonymous], 2001, J NEUROSCI
[7]  
[Anonymous], 2019, DRUG DISCOV TODAY, DOI DOI 10.1016/J.DRUDIS.2019.01.007
[8]  
[Anonymous], 2012, NEUROTOXICOLOGY, DOI DOI 10.1016/J.NEURO.2012.05.001
[9]  
[Anonymous], 2015, LAB CHIP, DOI DOI 10.1039/C5LC00133A
[10]  
[Anonymous], 2006, BMC NEUROSCI, DOI DOI 10.1186/1471-2202-7-61