A general three-dimensional simulation approach for micro-channel heat exchanger based on graph theory

被引:36
作者
Ren, Tao [1 ]
Ding, Guoliang [1 ]
Wang, Tingting [1 ]
Hu, Haitao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
关键词
Heat exchanger; Micro-channel; Modelling; Heat conduction; Refrigerant distribution; REFRIGERANT DISTRIBUTION; EVAPORATOR MODEL; PRESSURE-DROP; GAS COOLERS; CONDENSATION; MINICHANNEL; CONDENSERS;
D O I
10.1016/j.applthermaleng.2013.06.035
中图分类号
O414.1 [热力学];
学科分类号
摘要
For meeting the requirements of quickly designing high performance micro-channel heat exchanger, a general three-dimensional simulation approach considering the factors of heat conductions via fins, quality distribution among micro-channel tubes and flexible flow circuit arrangements is proposed in this paper. In the simulation approach, an approximate analytical solution for describing the three-dimensional heat conductions via fins is presented, having higher computation speed over the numerical method of directly calculating heat conductions; a theory-based refrigerant distribution model for predicting the quality distribution among micro-channel tubes is established instead of using homogeneous quality distribution, resulting in the improvement of evaporator model accuracy; and a graph-theory based computation algorithm is developed to calculate any possible flow circuit conveniently and quickly. The presented model is validated by experiments, and the deviations of the predicted heat capacity of micro-channel evaporator, condenser and gas cooler from the measured ones are within +/- 5%. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:660 / 674
页数:15
相关论文
共 36 条
[1]   Two-phase flow distribution in multiple parallel tubes [J].
Ablanque, N. ;
Oliet, C. ;
Rigola, J. ;
Perez-Segarra, C. D. ;
Oliva, A. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (06) :909-921
[2]   Effects of thermal conduction in microchannel gas coolers for carbon dioxide [J].
Asinari, P ;
Cecchinato, L ;
Fornasieri, E .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2004, 27 (06) :577-586
[3]   Modelling refrigerant distribution in microchannel evaporators [J].
Brix, Wiebke ;
Kaern, Martin Ryhl ;
Elmegaard, Brian .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2009, 32 (07) :1736-1743
[4]   Condensation of halogenated refrigerants inside smooth tubes [J].
Cavallini, A ;
Censi, G ;
Del Col, D ;
Doretti, L ;
Longo, GA ;
Rossetto, L .
HVAC&R RESEARCH, 2002, 8 (04) :429-451
[5]   A generalized heat transfer correlation for louver fin geometry [J].
Chang, YJ ;
Wang, CC .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (03) :533-544
[6]  
CHURCHILL SW, 1977, CHEM ENG-NEW YORK, V84, P91
[7]   Recent developments in simulation techniques for vapour-compression refrigeration systems [J].
Ding, Guo-liang .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2007, 30 (07) :1119-1133
[8]  
Domanski P.A., 2003, EVAPCOND SIMULATION
[9]   Compact heat exchangers modeling: Condensation [J].
Garcia-Cascales, J. R. ;
Vera-Garcia, F. ;
Gonzalvez-Macia, J. ;
Corberan-Salvador, J. M. ;
Johnson, M. W. ;
Kohler, G. T. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2010, 33 (01) :135-147
[10]   Condensation pressure drop in circular microchannels [J].
Garimella, S ;
Agarwal, A ;
Killion, JD .
HEAT TRANSFER ENGINEERING, 2005, 26 (03) :28-35