RANDOM MATRICES: UNIVERSAL PROPERTIES OF EIGENVECTORS

被引:234
作者
Tao, Terence [1 ]
Van Vu [2 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Rutgers, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Random matrices; universality; eigenvectors; eigenvalues;
D O I
10.1142/S2010326311500018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The four moment theorem asserts, roughly speaking, that the joint distribution of a small number of eigenvalues of a Wigner random matrix (when measured at the scale of the mean eigenvalue spacing) depends only on the first four moments of the entries of the matrix. In this paper, we extend the four moment theorem to also cover the coefficients of the eigenvectors of a Wigner random matrix. A similar result (with different hypotheses) has been proved recently by Knowles and Yin, using a different method. As an application, we prove some central limit theorems for these eigenvectors. In another application, we prove a universality result for the resolvent, up to the real axis. This implies universality of the inverse matrix.
引用
收藏
页数:27
相关论文
共 23 条
[1]  
BAI ZD, 2006, MATH MONOGRAPH SERIE, V2
[2]  
Borel E., 1906, INTRO GEOMETRIQUE QU
[3]  
Collins B., 2003, INTEGRALES MATRICIEL, V6
[4]  
DIACONIS P, 1987, ANN I H POINCARE-PR, V23, P397
[5]  
DIACONIS PW, 1992, SCAND J STAT, V19, P289
[6]  
Eras L., ARXIV10074652
[7]   Local Semicircle Law and Complete Delocalization for Wigner Random Matrices [J].
Erdoes, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :641-655
[8]  
Erdos L., ARXIV10013453
[9]  
ERDOS L, ARXIV09075605
[10]   Wegner Estimate and Level Repulsion for Wigner Random Matrices [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (03) :436-479