A Generalized Proximal Point Algorithm and Implicit Iterative Schemes for a Sequence of Operators on Banach Spaces

被引:8
作者
Kimura, Yasunori [1 ]
Takahashi, Wataru [1 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 5-6期
关键词
Accretive operator; Resolvent; M-accretive operator; Iteration; Weak convergence; Yosida approximation; Nonexpansive mapping; Implicit iterative scheme; Common fixed point; W-mapping;
D O I
10.1007/s11228-007-0064-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to obtain weak convergence of an iterative scheme generated by a sequence of accretive operators defined on a real Banach space, which is a generalization of the result given by Kamimura and Takahashi (J. Approx. Theory 106: 226-240, 2000). We also show several applications to the implicit iterative schemes with the Yosida approximations and with the W-mappings generated by a sequence of nonexpansive mappings.
引用
收藏
页码:597 / 619
页数:23
相关论文
共 27 条
[1]  
[Anonymous], 2001, J KOREAN MATH SOC
[2]  
[Anonymous], 2000, TOPOL METHODS NONLIN
[3]  
[Anonymous], 1997, ANN U MARIAC CURIE S
[4]  
Atsushiba S., 1999, Indian J. Math., V41, P435
[5]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[6]  
Browder F. E., 1968, NONLINEAR FUNCTIONAL, VXVIII, P1
[7]   SIMPLE PROOF OF THE MEAN ERGODIC THEOREM FOR NON-LINEAR CONTRACTIONS IN BANACH-SPACES [J].
BRUCK, RE .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 32 (2-3) :107-116
[8]  
Bruck RE, 1977, HOUSTON J MATH, V3, P459
[9]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[10]  
GOEBEL K., 1984, MONOGRAPHS TXB PURE, V83