Identification of outliers in pollution concentration levels using anomaly detection

被引:0
|
作者
Anandharajan, T. R. V. [1 ]
Vignajeth, K. K. [1 ]
Hariharan, G. Abhishek [1 ]
Jijendiran, R. [1 ]
机构
[1] Velammal Inst Technol, Madras, Tamil Nadu, India
来源
2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES IN INFORMATION AND COMMUNICATION TECHNOLOGIES (ICCTICT) | 2016年
关键词
AirPollution; MachineLearning; Anomaly detection; Air quality Index;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection is generally an identification of any odd or anomalous data sometimes even called as an outlier from a give pattern of data. It involves machine learning technique to learn the data and determine the outliers based on a probability condition. Machine learning, a branch of artificial intelligence plays a vital role in analyzing the data and identifies the outliers with a good probability. The objective of this paper is to determine the outlier of pollutant's concentration based on anomaly detection techniques and describe the air quality standards of the particular area.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Anomaly detection using topology
    Basener, Bill
    Ientilucci, Emmett J.
    Messinger, David W.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565
  • [42] Detection of outliers in data streams using grouping methods
    Duraj, Agnieszka
    Chomatek, Lukasz
    PRZEGLAD ELEKTROTECHNICZNY, 2019, 95 (02): : 85 - 87
  • [43] Outliers Detection Method Using Clustering in Buildings Data
    Habib, Usman
    Zucker, Gerhard
    Bloechle, Max
    Judex, Florian
    Haase, Jan
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 694 - 700
  • [44] DETECTION OF OUTLIERS AND ROBUST ESTIMATION USING FUZZY CLUSTERING
    VANCUTSEM, B
    GATH, I
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (01) : 47 - 61
  • [45] Detection of Network Intrusions Using Anomaly Detection
    Macedo, Andre Manuel
    Magalhaes, Joao Paulo
    2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
  • [46] Detection and visualisation of outliers using Kernel Principal Components
    Nasser, Alissar
    Hamad, Denis
    2015 FIFTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION AND COMMUNICATION TECHNOLOGY AND ITS APPLICATIONS (DICTAP), 2015, : 119 - 124
  • [47] Detection of outliers in spatial data by using local difference
    Zhang, SY
    Zhu, ZY
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 400 - 405
  • [48] Malware Detection using Anomaly Detection Algorithms
    Buriro, Attaullah
    Rafi, Arslan
    Yaqub, Muhammad Azfar
    Luccio, Flaminia
    2024 FIFTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS, ICUFN 2024, 2024, : 330 - 335
  • [49] Evaluation of the application of sequence data to the identification of outbreaks of disease using anomaly detection methods
    Diaz-Cao, Jose Manuel
    Liu, Xin
    Kim, Jeonghoon
    Clavijo, Maria Jose
    Martinez-Lopez, Beatriz
    VETERINARY RESEARCH, 2023, 54 (01) : 75
  • [50] Towards automatic anomaly detection in fisheries using electronic monitoring and automatic identification system
    Acharya, Debaditya
    Farazi, Moshiur
    Rolland, Vivien
    Petersson, Lars
    Rosebrock, Uwe
    Smith, Daniel
    Ford, Jessica
    Wang, Dadong
    Tuck, Geoffrey N.
    Little, L. Richard
    Wilcox, Chris
    FISHERIES RESEARCH, 2024, 272