Identification of outliers in pollution concentration levels using anomaly detection

被引:0
|
作者
Anandharajan, T. R. V. [1 ]
Vignajeth, K. K. [1 ]
Hariharan, G. Abhishek [1 ]
Jijendiran, R. [1 ]
机构
[1] Velammal Inst Technol, Madras, Tamil Nadu, India
来源
2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES IN INFORMATION AND COMMUNICATION TECHNOLOGIES (ICCTICT) | 2016年
关键词
AirPollution; MachineLearning; Anomaly detection; Air quality Index;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection is generally an identification of any odd or anomalous data sometimes even called as an outlier from a give pattern of data. It involves machine learning technique to learn the data and determine the outliers based on a probability condition. Machine learning, a branch of artificial intelligence plays a vital role in analyzing the data and identifies the outliers with a good probability. The objective of this paper is to determine the outlier of pollutant's concentration based on anomaly detection techniques and describe the air quality standards of the particular area.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Anomaly Detection, Classification and Identification Tool (ADCIT)
    Asefi, Sajjad
    Mitrovic, Mile
    Cetenovic, Dragan
    Levi, Victor
    Gryazina, Elena
    Terzija, Vladimir
    SOFTWARE IMPACTS, 2023, 15
  • [32] PIDForest: Anomaly Detection via Partial Identification
    Gopalan, Parikshit
    Sharan, Vatsal
    Wieder, Udi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [33] Research on the identification of software behavior in anomaly detection
    Yang, Jun
    Du, Xiangping
    Zhou, Liang
    Shan, Songling
    Cui, Baojiang
    2016 10TH INTERNATIONAL CONFERENCE ON INNOVATIVE MOBILE AND INTERNET SERVICES IN UBIQUITOUS COMPUTING (IMIS), 2016, : 295 - 298
  • [34] On the Identification of Decision Boundaries for Anomaly Detection in CPPS
    Li, Peng
    Niggemann, Oliver
    Hammer, Barbara
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 1311 - 1316
  • [35] Detection and Identification of Sensor Anomaly for Aerospace Applications
    Liu, Liansheng
    Liu, Datong
    Peng, Yu
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM 2016 PROCEEDINGS, 2016,
  • [36] Unsupervised Anomaly Detection Approach for Cyberattack Identification
    Segurola-Gil, Lander
    Moreno-Moreno, Mikel
    Irigoien, Itziar
    Florez-Tapia, Ane Miren
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5291 - 5302
  • [37] A Framework for Anomaly Identification Applied on Fall Detection
    Galvao, Yves M.
    Portela, Leticia
    Ferreira, Janderson
    Barros, Pablo
    De Araujo Fagundes, Oberta Andrade
    Fernandes, Bruno J. T.
    IEEE ACCESS, 2021, 9 : 77264 - 77274
  • [38] Survey on IoT Device Identification and Anomaly Detection
    Fan L.-N.
    Li C.-L.
    Wu Y.-C.
    Duan C.-X.
    Wang Z.-L.
    Lin H.
    Yang J.-H.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (01): : 288 - 308
  • [39] Botnet Identification Via Universal Anomaly Detection
    Siboni, Shachar
    Cohen, Asaf
    2014 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS'14), 2014, : 101 - 106
  • [40] Anomaly Detection Using Ensembles
    Shoemaker, Larry
    Hall, Lawrence O.
    MULTIPLE CLASSIFIER SYSTEMS, 2011, 6713 : 6 - 15