Identification of outliers in pollution concentration levels using anomaly detection

被引:0
|
作者
Anandharajan, T. R. V. [1 ]
Vignajeth, K. K. [1 ]
Hariharan, G. Abhishek [1 ]
Jijendiran, R. [1 ]
机构
[1] Velammal Inst Technol, Madras, Tamil Nadu, India
来源
2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES IN INFORMATION AND COMMUNICATION TECHNOLOGIES (ICCTICT) | 2016年
关键词
AirPollution; MachineLearning; Anomaly detection; Air quality Index;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection is generally an identification of any odd or anomalous data sometimes even called as an outlier from a give pattern of data. It involves machine learning technique to learn the data and determine the outliers based on a probability condition. Machine learning, a branch of artificial intelligence plays a vital role in analyzing the data and identifies the outliers with a good probability. The objective of this paper is to determine the outlier of pollutant's concentration based on anomaly detection techniques and describe the air quality standards of the particular area.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Unsupervised Anomaly Detection with Variational Auto-Encoder and Local Outliers Factor for KPIs
    Yan, Shili
    Tang, Bing
    Luo, Jincheng
    Fu, Xing
    Zhang, Xiaoyuan
    19TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2021), 2021, : 476 - 483
  • [22] Enhancing Anomaly Detection in Maritime Operational IoT Time Series Data with Synthetic Outliers
    Kim, Hyunjoo
    Joe, Inwhee
    ELECTRONICS, 2024, 13 (19)
  • [23] Sewer Pipeline Fault Identification Using Anomaly Detection Algorithms on Video Sequences
    Fang, Xu
    Guo, Wenhao
    Li, Qingquan
    Zhu, Jiasong
    Chen, Zhipeng
    Yu, Jianwei
    Zhou, Baoding
    Yang, Haokun
    IEEE ACCESS, 2020, 8 : 39574 - 39586
  • [24] Identification of Soft Failures in Optical Links Using Low Complexity Anomaly Detection
    Varughese, Siddharth
    Lippiatt, Daniel
    Richter, Thomas
    Tibuleac, Sorin
    Ralph, Stephen E.
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [25] Anomaly Detection in Data-Driven Coherency Identification Using Cumulant Tensor
    Sun, Bo
    Xu, Yijun
    Wang, Qinling
    Lu, Shuai
    Yu, Ruizhi
    Gu, Wei
    Mili, Lamine
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (02) : 4767 - 4770
  • [26] Personalized anomaly detection in PPG data using representation learning and biometric identification
    Ghorbani, Ramin
    Reinders, Marcel J. T.
    Tax, David M. J.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 94
  • [27] Anomaly Detection and Mode Identification in Multimode Processes Using the Field Kalman Filter
    Cong, Tian
    Tan, Ruomu
    Ottewill, James R.
    Thornhill, Nina F.
    Baranowski, Jerzy
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2021, 29 (05) : 2192 - 2205
  • [28] Anomaly Detection System in Determination of Heavy Metal Pollution using K-medoid Algorithm
    Jabez, J.
    Muthukumar, B.
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2015, 9 (04): : 3203 - 3206
  • [29] Three Levels Network Analysis for Anomaly Detection
    Zarpelao, Bruno B.
    Mendes, Leonardo S.
    Proenca, Mario L., Jr.
    Rodrigues, Joel J. P. C.
    2009 INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS, 2009, : 281 - +
  • [30] Identification of pollution sources in the Romanian Somes River using graphical analysis of concentration profiles
    Ani, Elisabeta-Cristina
    Avramenko, Yuri
    Kraslawski, Andrzej
    Agachi, Paul Serban
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2011, 6 (05): : 801 - 812