Adaptive optics approach to surface-enhanced Raman scattering

被引:5
|
作者
Shutova, Mariia [1 ]
Sinyukov, Alexander M. [1 ]
Birmingham, Blake [2 ]
Zhang, Zhenrong [2 ]
Sokolov, Alexei, V [1 ,2 ]
机构
[1] Texas A&M Univ, Inst Quantum Sci & Engn, Dept Phys & Astron, College Stn, TX 77843 USA
[2] Baylor Univ, BRIC Waco, Waco, TX 76798 USA
基金
美国国家科学基金会;
关键词
SERS; SPECTROSCOPY;
D O I
10.1364/OL.394548
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Surface-enhanced Raman scattering (SERS) spectroscopy is a popular technique for detecting chemicals in small quantities. Rough metallic surfaces with nanofeatures are some of the most widespread and commercially successful substrates for efficient SERS measurements. A rough metallic surface creates a high-density random distribution of so-called "hot spots" with local optical field enhancement causing Raman signal to increase. In this Letter, we revisit the classic SERS experiment [Surf. Sci. 158, 229 (1985)] with rough metallic surfaces covered by a thin layer of copper phthalocyanine molecules. As a modification to the classic configuration, we apply an adaptive wavefront correction of a laser beam profile. As a result, we demonstrate an increase in brightness of local SERS hot spots and redistribution of Raman signal over the substrate area. We hypothesize that the improvement is due to optimal coupling of the shaped laser beam to the random plasmonic nanoantenna configurations. We show that the proposed adaptive-SERS modification is independent of the exact structure of the surface roughness and topography, works with many rough surfaces, and gives brighter Raman hot spots in comparison with conventional SERS measurements. We prove that the adaptive SERS is a powerful instrument for improving SERS sensitivity. (C) 2020 Optical Society of America
引用
收藏
页码:3709 / 3712
页数:4
相关论文
共 50 条
  • [21] Surface-Enhanced Raman Scattering of Proteins
    Kahraman, Mehmet
    Sur, Ilknur
    Culha, Mustafa
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 1055 - 1056
  • [22] Surface-enhanced Raman scattering of hydroxyproline
    Guerrero, Ariel R.
    Aroca, Ricardo F.
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (04) : 478 - 481
  • [23] Surface-Enhanced Raman Scattering of Microorganisms
    Culha, Mustafa
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 86 - 87
  • [24] Surface-enhanced raman scattering of λ-DNA
    Wei, H.
    Xu, H.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 89 (02): : 273 - 275
  • [25] The discovery of surface-enhanced Raman scattering
    McQuillan, A. James
    NOTES AND RECORDS OF THE ROYAL SOCIETY, 2009, 63 (01): : 105 - 109
  • [26] SURFACE-ENHANCED RAMAN-SCATTERING
    MCCALL, SL
    PLATZMAN, PM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 340 - 340
  • [27] The theory of surface-enhanced Raman scattering
    Lombardi, John R.
    Birke, Ronald L.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (14):
  • [28] Surface-enhanced Raman scattering of λ -DNA
    H. Wei
    H. Xu
    Applied Physics A, 2007, 89
  • [29] SURFACE-ENHANCED RAMAN-SCATTERING
    OTTO, A
    MROZEK, I
    GRABHORN, H
    AKEMANN, W
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (05) : 1143 - 1212
  • [30] Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization
    Kelestemur, Seda
    Avci, Ertug
    Culha, Mustafa
    CHEMOSENSORS, 2018, 6 (01)