Two-Tier Resource Allocation in Dynamic Network Slicing Paradigm with Deep Reinforcement Learning

被引:8
作者
Yang, Guo [1 ]
Liu, Qi [1 ]
Zhou, Xiangwei [2 ]
Qian, Yuwen [1 ]
Wu, Wen [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing, Peoples R China
[2] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA
来源
2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2019年
关键词
Network slicing; reinforcement learning; QoE; resource allocation; 5G; MANAGEMENT;
D O I
10.1109/globecom38437.2019.9014254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network slicing is treated as a key technology of the rapidly developing 5G system. Nevertheless, the environment of the users is extremely complex, leading to a great challenge for allocating the slices in an optimal manner. In this paper, we propose a dynamic slice allocation scheme with two-tier paradigm in consideration of the quality of experience (QoE). In the first tier, called local tier, we employ linear programming aided by a penalty function to allocate the radio resources in the slices to services for user equipments aiming at the best QoE. In the second tier, called edge tier, we design a deep reinforcement learning algorithm to dynamically allocate the computing resources to the edge networks, to achieve the best QoE and highest resource utilization rate. Simulation results demonstrate that the proposed paradigm can achieve better throughput and QoE in comparison with the traditional network slicing paradigms.
引用
收藏
页数:6
相关论文
共 23 条
[1]  
3GPP, 5G NR PHYS CHANN MOD
[2]   Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions [J].
Afolabi, Ibrahim ;
Taleb, Tarik ;
Samdanis, Konstantinos ;
Ksentini, Adlen ;
Flinck, Hannu .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2018, 20 (03) :2429-2453
[3]  
Boyd Stephen, 2004, Convex Optimization, DOI 10.1017/CBO9780511804441
[4]   5G-TRANSFORMER: Slicing and Orchestrating Transport Networks for Industry Verticals [J].
de la Oliva, Antonio ;
Li, Xi ;
Costa-Perez, Xavier ;
Bernardos, Carlos J. ;
Bertin, Philippe ;
Iovanna, Paola ;
Deiss, Thomas ;
Mangues, Josep ;
Mourad, Alain ;
Casetti, Claudio ;
Gonzalez, Jose Enrique ;
Azcorra, Arturo .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (08) :78-84
[5]   AN EFFECTIVE APPROACH TO 5G: WIRELESS NETWORK VIRTUALIZATION [J].
Feng, Zhiyong ;
Qiu, Chen ;
Feng, Zebing ;
Wei, Zhiqing ;
Li, Wei ;
Zhang, Ping .
IEEE COMMUNICATIONS MAGAZINE, 2015, 53 (12) :53-+
[6]   Cooperative Radio Resource Management in Heterogeneous Cloud Radio Access Networks [J].
Gerasimenko, Mikhail ;
Moltchanov, Dmitri ;
Florea, Roman ;
Andreev, Sergey ;
Koucheryavy, Yevgeni ;
Himayat, Nageen ;
Yeh, Shu-Ping ;
Talwar, Shilpa .
IEEE ACCESS, 2015, 3 :397-406
[7]   Network Slices toward 5G Communications: Slicing the LTE Network [J].
Katsalis, Kostas ;
Nikaein, Navid ;
Schiller, Eryk ;
Ksentini, Adlen ;
Braun, Torsten .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (08) :146-154
[8]  
Lee Y. L., IEEE T WIRELESS COMM, V17, P2146
[9]   Deep Reinforcement Learning for Resource Management in Network Slicing [J].
Li, Rongpeng ;
Zhao, Zhifeng ;
Sun, Qi ;
I, Chih-Lin ;
Yang, Chenyang ;
Chen, Xianfu ;
Zhao, Minjian ;
Zhang, Honggang .
IEEE ACCESS, 2018, 6 :74429-74441
[10]   Virtual Resource Allocation in Information-Centric Wireless Networks With Virtualization [J].
Liang, Chengchao ;
Yu, F. Richard ;
Yao, Haipeng ;
Han, Zhu .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (12) :9902-9914