ON THE NONHOMOGENEOUS NAVIER-STOKES SYSTEM WITH NAVIER FRICTION BOUNDARY CONDITIONS

被引:21
作者
Ferreira, Lucas C. F. [1 ]
Planas, Gabriela [1 ]
Villamizar-Roa, Elder J. [2 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, Inst Matemat Estat & Computacao Cient, BR-13083859 Campinas, SP, Brazil
[2] Univ Ind Santander, Escuela Matemat, Bucaramanga 678, Colombia
基金
巴西圣保罗研究基金会;
关键词
nonhomogeneous Navier-Stokes equations; Navier boundary conditions; inviscid limit; INCOMPRESSIBLE FLUIDS; VANISHING VISCOSITY; INVISCID LIMIT; WEAK SOLUTIONS; EQUATIONS; EXISTENCE; DENSITY;
D O I
10.1137/12089380X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the issue of existence of weak solutions for the nonhomogeneous Navier-Stokes system with Navier friction boundary conditions allowing the presence of vacuum zones and assuming rough conditions on the data. We also study the convergence, as the viscosity goes to zero, of weak solutions for the nonhomogeneous Navier-Stokes system with Navier friction boundary conditions to the strong solution of the Euler equations with variable density, provided that the initial data converge in L-2 to a smooth enough limit.
引用
收藏
页码:2576 / 2595
页数:20
相关论文
共 34 条
[1]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[2]  
[Anonymous], 1963, COMP MATH MATH PHYS+
[3]  
Antontsev S. A., 1973, Mathematical Study of Flows of Nonhomogeneous Fluids
[4]  
Beiro da Veiga H., 1980, Commun. Partial Differ. Equ, V5, P95, DOI DOI 10.1080/03605308008820134
[5]   Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains [J].
Braz e Silva, P. ;
Rojas-Medar, M. A. ;
Villamizar-Roa, E. J. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (03) :358-372
[6]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636
[7]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742
[8]  
Danchin R., 2006, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V15, P637, DOI 10.5802/afst.1133
[9]   Density-dependent incompressible fluids in bounded domains [J].
Danchin, R. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :333-381
[10]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547