Enumeration of Lukasiewicz paths modulo some patterns

被引:6
作者
Baril, Jean-Luc [1 ]
Kirgizov, Sergey [1 ]
Petrossian, Armen [1 ]
机构
[1] Univ Bourgogne, LE2I, BP 47 870, F-21078 Dijon, France
关键词
Lukasiewicz path; Dyck path; Motzkin path; Equivalence relation; Patterns; EQUIVALENCE CLASSES; DYCK; STRINGS; VALLEYS; PEAKS;
D O I
10.1016/j.disc.2018.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any pattern a of length at most two, we enumerate equivalence classes of Lukasiewicz paths of length n >= 0 where two paths are equivalent whenever the occurrence positions of a are identical on these paths. As a byproduct, we give a constructive bijection between Motzkin paths and some equivalence classes of Lukasiewicz paths. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:997 / 1005
页数:9
相关论文
共 31 条
[21]  
Panayotopoulos A., 2002, Journal of Combinatorial Mathematics and Combinatorial Computing, V40, P33
[22]  
Peart P., 2001, Journal of Integer Sequences, V4, P1
[23]  
Prodinger H., 2007, DISCRETE MATH THEOR, P353
[24]   Counting strings in Dyck paths [J].
Sapounakis, A. ;
Tasoulas, I. ;
Tsikouras, P. .
DISCRETE MATHEMATICS, 2007, 307 (23) :2909-2924
[25]  
Sapounakis A, 2005, ELECTRON J COMB, V12
[26]  
Sapounakis A, 2007, AUSTRALAS J COMB, V39, P49
[27]  
SCHUTZENBERGER MP, 1971, SEMINAIRE IRIA, P199
[28]  
Stanley R.P., 1999, Enumerative combinatorics. Vol. 2
[29]   The statistic "number of udu's" in Dyck paths [J].
Sun, YD .
DISCRETE MATHEMATICS, 2004, 287 (1-3) :177-186
[30]   Lattice path encodings in a combinatorial proof of a differential identity [J].
Varvak, Anna .
DISCRETE MATHEMATICS, 2008, 308 (23) :5834-5840