Enumeration of Lukasiewicz paths modulo some patterns

被引:6
|
作者
Baril, Jean-Luc [1 ]
Kirgizov, Sergey [1 ]
Petrossian, Armen [1 ]
机构
[1] Univ Bourgogne, LE2I, BP 47 870, F-21078 Dijon, France
关键词
Lukasiewicz path; Dyck path; Motzkin path; Equivalence relation; Patterns; EQUIVALENCE CLASSES; DYCK; STRINGS; VALLEYS; PEAKS;
D O I
10.1016/j.disc.2018.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any pattern a of length at most two, we enumerate equivalence classes of Lukasiewicz paths of length n >= 0 where two paths are equivalent whenever the occurrence positions of a are identical on these paths. As a byproduct, we give a constructive bijection between Motzkin paths and some equivalence classes of Lukasiewicz paths. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:997 / 1005
页数:9
相关论文
共 34 条
  • [1] Equivalence classes of Dyck paths modulo some statistics
    Baril, Jean-Luc
    Petrossian, Armen
    DISCRETE MATHEMATICS, 2015, 338 (04) : 655 - 660
  • [2] Rooted planar maps modulo some patterns
    Baril, Jean -Luc
    Genestier, Richard
    Giorgetti, Alain
    Petrossian, Armen
    DISCRETE MATHEMATICS, 2016, 339 (04) : 1199 - 1205
  • [3] An Infinite Family of Adsorption Models and Restricted Lukasiewicz Paths
    R. Brak
    G. K. Iliev
    T. Prellberg
    Journal of Statistical Physics, 2011, 145 : 669 - 685
  • [4] An Infinite Family of Adsorption Models and Restricted Lukasiewicz Paths
    Brak, R.
    Iliev, G. K.
    Prellberg, T.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (03) : 669 - 685
  • [5] Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two
    Baril, Jean-Luc
    Petrossian, Armen
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (07)
  • [6] Enumeration of Dyck Paths with Air Pockets
    Baril, Jean-Luc
    Kirgizov, Sergey
    Marechal, Remi
    Vajnovszki, Vincent
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (03)
  • [7] Dyck paths with catastrophes modulo the positions of a given pattern
    Baril, Jean-Luc
    Kirgizov, Sergey
    Petrossian, Armen
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 398 - 418
  • [8] Enumeration of strings in Dyck paths: A bijective approach
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3032 - 3039
  • [9] Enumeration of the Motzkin paths above a line of rational slope
    Yang, Lin
    Zhang, Yu -Yuan
    Yang, Sheng-Liang
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [10] Equivalence classes of ballot paths modulo strings of length 2 and 3
    Manes, K.
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2016, 339 (10) : 2557 - 2572