Enumeration of Lukasiewicz paths modulo some patterns

被引:6
作者
Baril, Jean-Luc [1 ]
Kirgizov, Sergey [1 ]
Petrossian, Armen [1 ]
机构
[1] Univ Bourgogne, LE2I, BP 47 870, F-21078 Dijon, France
关键词
Lukasiewicz path; Dyck path; Motzkin path; Equivalence relation; Patterns; EQUIVALENCE CLASSES; DYCK; STRINGS; VALLEYS; PEAKS;
D O I
10.1016/j.disc.2018.12.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any pattern a of length at most two, we enumerate equivalence classes of Lukasiewicz paths of length n >= 0 where two paths are equivalent whenever the occurrence positions of a are identical on these paths. As a byproduct, we give a constructive bijection between Motzkin paths and some equivalence classes of Lukasiewicz paths. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:997 / 1005
页数:9
相关论文
共 31 条
[1]  
[Anonymous], 2004, COMBINATORY ANAL
[2]  
[Anonymous], AM MATH SOC
[3]  
Barcucci E., 1992, Pure Math. Appl. Ser. A, V2, P249
[4]  
Baril JL, 2015, J INTEGER SEQ, V18
[5]   Equivalence classes of Dyck paths modulo some statistics [J].
Baril, Jean-Luc ;
Petrossian, Armen .
DISCRETE MATHEMATICS, 2015, 338 (04) :655-660
[6]   PEAKS AND VALLEYS IN MOTZKIN PATHS [J].
Brennan, Charlotte ;
Mavhungu, Simon .
QUAESTIONES MATHEMATICAE, 2010, 33 (02) :171-188
[7]   Dyck path enumeration [J].
Deutsch, E .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :167-202
[8]   MOTZKIN NUMBERS [J].
DONAGHEY, R ;
SHAPIRO, LW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 23 (03) :291-301
[9]  
Drake Dan, 2012, [Journal of the Chungcheong Mathematical Society, 충청수학회지], V25, P475
[10]  
Flajolet Philippe., 2009, Analytic Combinatorics