An extension of Sharkovsky's theorem to periodic difference equations

被引:34
作者
Alsharawi, Z
Angelos, J
Elaydi, S [1 ]
Rakesh, L
机构
[1] Trinity Univ, San Antonio, TX 78212 USA
[2] Cent Michigan Univ, Mt Pleasant, MI 48858 USA
关键词
periodic orbits; difference equations; geometric cycles; skew-product dynamical systems; nonautonomous;
D O I
10.1016/j.jmaa.2005.04.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an extension of Sharkovsky's theorem and its converse to periodic difference equations. In addition, we provide a simple method for constructing a p-periodic difference equation having an r-periodic geometric cycle with or without stability properties. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 141
页数:14
相关论文
共 30 条
[11]  
ELAYDI S, UNPUB J DIFFER EQUAT
[12]  
ELAYDI S, 2003, P 8 INT C DIFF EQ BR
[13]  
Elaydi SN, 2000, Discrete chaos
[14]   Attractors for discrete periodic dynamical systems [J].
Franke, JE ;
Selgrade, JF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 286 (01) :64-79
[15]  
FRANKE JE, 2005, J DIFFER EQUATIONS A
[16]   On the periodically perturbed logistic equation [J].
Grinfeld, M ;
Knight, PA ;
Lamba, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (24) :8035-8040
[17]   The effect of periodic habitat fluctuations on a nonlinear insect population model [J].
Henson, SM ;
Cushing, JM .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 36 (02) :201-226
[18]   Multiple attractors and resonance in periodically forced population models [J].
Henson, SM .
PHYSICA D, 2000, 140 (1-2) :33-49
[19]   INSECT POPULATIONS RESPOND TO FLUCTUATING ENVIRONMENTS [J].
JILLSON, DA .
NATURE, 1980, 288 (5792) :699-700
[20]   BIFURCATION STRUCTURE OF THE NONAUTONOMOUS QUADRATIC MAP [J].
KAPRAL, R ;
MANDEL, P .
PHYSICAL REVIEW A, 1985, 32 (02) :1076-1081