Runaway relativistic electron avalanche seeding in the Earth's atmosphere

被引:23
作者
Carlson, B. E. [1 ]
Lehtinen, N. G. [1 ]
Inan, U. S. [1 ]
机构
[1] Stanford Univ, Space Telecommun & Radiosci Lab, Dept Elect Engn, Stanford, CA 94305 USA
关键词
D O I
10.1029/2008JA013210
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Relativistic runaway electron avalanches (RREAs) occur when relativistic electrons undergo avalanche multiplication when driven by electric fields. The RRE avalanche has been studied extensively, but existing results typically assume a rudimentary source of seed relativistic electrons. Here we focus on the seeding process and simulate effective seeding efficiencies for various seed particle types, energies, and geometries. Including known results from cosmic ray physics, we calculate total seed particle distributions and their statistical fluctuations and use the seeding efficiency results to determine the total number of effective RREA seed particles at various points in the atmosphere. The results indicate that effective seed flux is quite large with only moderate statistical fluctuations.
引用
收藏
页数:5
相关论文
共 22 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Terrestrial gamma-ray flashes and neutron pulses from direct simulations of gigantic upward atmospheric discharge [J].
Babich, L. P. ;
Kudryavtsev, A. Yu. ;
Kudryavtseva, M. L. ;
Kutsyk, I. M. .
JETP LETTERS, 2007, 85 (10) :483-487
[3]   The feedback mechanism of runaway air breakdown -: art. no. L09809 [J].
Babich, LP ;
Donskoy, EN ;
Kutsyk, IM ;
Roussel-Dupré, RA .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (09) :1-5
[4]   Propagation speed of runaway electron avalanches [J].
Coleman, L. M. ;
Dwyer, J. R. .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (11)
[5]   Relativistic breakdown in planetary atmospheres [J].
Dwyer, J. R. .
PHYSICS OF PLASMAS, 2007, 14 (04)
[6]   The initiation of lightning by runaway air breakdown [J].
Dwyer, JR .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (20) :1-4
[7]   A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations [J].
Dwyer, JR ;
Smith, DM .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (22) :1-4
[8]  
Dwyer JR, 2004, GEOPHYS RES LETT, V31, DOI [10.1029/2003GL017781, 10.1029/2003GL018771]
[9]   Runaway breakdown and electric discharges in thunderstorms [J].
Gurevich, AV ;
Zybin, KP .
PHYSICS-USPEKHI, 2001, 44 (11) :1119-1140
[10]   High energy cosmic ray particles and the most powerful discharges in thunderstorm atmosphere [J].
Gurevich, AV ;
Zybin, KP .
PHYSICS LETTERS A, 2004, 329 (4-5) :341-347