Impact of obesity on breast cancer recurrence and minimal residual disease

被引:57
作者
Ecker, Brett L. [1 ,2 ]
Lee, Jun Y. [2 ,3 ,4 ]
Sterner, Christopher J. [2 ,3 ,4 ]
Solomon, Aaron C. [2 ,3 ,4 ]
Pant, Dhruv K. [2 ,3 ,4 ]
Shen, Fei [2 ,3 ,4 ]
Peraza, Javier [2 ,3 ,4 ]
Vaught, Lauren [2 ,3 ,4 ]
Mahendra, Samyukta [2 ,3 ,4 ]
Belka, George K. [2 ,3 ,4 ]
Pan, Tien-chi [2 ,3 ,4 ]
Schmitz, Kathryn H. [5 ]
Chodosh, Lewis A. [2 ,3 ,4 ]
机构
[1] Univ Penn, Dept Surg, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Canc Biol, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Abramson Canc Ctr, 2 PREVENT Translat Ctr Excellence, Philadelphia, PA 19104 USA
[4] Univ Penn, Abramson Family Canc Res Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Penn State Coll Med, Penn State Canc Inst, Hershey, PA 17033 USA
关键词
Obesity; High-fat diet; Breast cancer; Recurrence; Tumor dormancy; BODY-MASS INDEX; MAMMARY-TUMOR PROGRESSION; INDUCED WEIGHT-LOSS; GROWTH-FACTOR; FREE SURVIVAL; CALORIE RESTRICTION; POSTMENOPAUSAL WOMEN; ADIPONECTIN LEVELS; RECEPTOR; THERAPY;
D O I
10.1186/s13058-018-1087-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundObesity is associated with an increased risk of breast cancer recurrence and cancer death. Recurrent cancers arise from the pool of residual tumor cells, or minimal residual disease (MRD), that survives primary treatment and persists in the host. Whether the association of obesity with recurrence risk is causal is unknown, and the impact of obesity on MRD and breast cancer recurrence has not been reported in humans or in animal models.MethodsDoxycycline-inducible primary mammary tumors were generated in intact MMTV-rtTA;TetO-HER2/neu (MTB/TAN) mice or orthotopic recipients fed a high-fat diet (HFD; 60% kcal from fat) or a control low-fat diet (LFD; 10% kcal from fat). Following oncogene downregulation and tumor regression, mice were followed for clinical recurrence. Body weight was measured twice weekly and used to segregate HFD mice into obese (i.e., responders) and lean (i.e., nonresponders) study arms, and obesity was correlated with body fat percentage, glucose tolerance (measured using intraperitoneal glucose tolerance tests), serum biomarkers (measured by enzyme-linked immunosorbent assay), and tissue transcriptomics (assessed by RNA sequencing). MRD was quantified by droplet digital PCR.ResultsHFD-Obese mice weighed significantly more than HFD-Lean and LFD control mice (p < 0.001) and had increased body fat percentage (p < 0.001). Obese mice exhibited fasting hyperglycemia, hyperinsulinemia, and impaired glucose tolerance, as well as decreased serum levels of adiponectin and increased levels of leptin, resistin, and insulin-like growth factor 1. Tumor recurrence was accelerated in HFD-Obese mice compared with HFD-Lean and LFD control mice (median relapse-free survival 53.0 days vs. 87.0 days vs. 80.0 days, log-rank p < 0.001; HFD-Obese compared with HFD-Lean HR 2.52, 95% CI 1.52-4.16; HFD-Obese compared with LFD HR 2.27, 95% CI 1.42-3.63). HFD-Obese mice harbored a significantly greater number of residual tumor cells than HFD-Lean and LFD mice (12,550 991 vs. 7339 +/- 2182 vs. 4793 +/- 1618 cells, p < 0.001).Conclusion These studies provide a genetically engineered mouse model for study of the association of diet-induced obesity with breast cancer recurrence. They demonstrate that this model recapitulates physiological changes characteristic of obese patients, establish that the association between obesity and recurrence risk is causal in nature, and suggest that obesity is associated with the increased survival and persistence of residual tumor cells.
引用
收藏
页数:16
相关论文
共 94 条
[1]   Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy [J].
Abravanel, Daniel L. ;
Belka, George K. ;
Pan, Tien-chi ;
Pant, Dhruv K. ;
Collins, Meredith A. ;
Sterner, Christopher J. ;
Chodosh, Lewis A. .
JOURNAL OF CLINICAL INVESTIGATION, 2015, 125 (06) :2484-2496
[2]   Par-4 Downregulation Promotes Breast Cancer Recurrence by Preventing Multinucleation following Targeted Therapy [J].
Alvarez, James V. ;
Pan, Tien-chi ;
Ruth, Jason ;
Feng, Yi ;
Zhou, Alice ;
Pant, Dhruv ;
Grimley, Joshua S. ;
Wandless, Thomas J. ;
DeMichele, Angela ;
Chodosh, Lewis A. .
CANCER CELL, 2013, 24 (01) :30-44
[3]  
[Anonymous], CA-CANCER J CLIN, DOI DOI 10.3322/caac.20115
[4]   Adipokines: The missing link between insulin resistance and obesity [J].
Antuna-Puente, B. ;
Feve, B. ;
Fellahi, S. ;
Bastard, J. -P. .
DIABETES & METABOLISM, 2008, 34 (01) :2-11
[5]   Association of Locoregional Control With High Body Mass Index in Women Undergoing Breast Conservation Therapy for Early-Stage Breast Cancer [J].
Bergom, Carmen ;
Kelly, Tracy ;
Bedi, Meena ;
Saeed, Hina ;
Prior, Phillip ;
Rein, Lisa E. ;
Szabo, Aniko ;
Wilson, J. Frank ;
Currey, Adam D. ;
White, Julia .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (01) :65-71
[6]   Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation [J].
Boxer, RB ;
Jang, JW ;
Sintasath, L ;
Chodosh, LA .
CANCER CELL, 2004, 6 (06) :577-586
[7]   In Vivo and in Vitro Evidence That PPARγ Ligands Are Antagonists of Leptin Signaling in Breast Cancer [J].
Catalano, Stefania ;
Mauro, Loredana ;
Bonofiglio, Daniela ;
Pellegrino, Michele ;
Qi, Hongyan ;
Rizza, Pietro ;
Vizza, Donatella ;
Bossi, Gianluca ;
Ando, Sebastiano .
AMERICAN JOURNAL OF PATHOLOGY, 2011, 179 (02) :1030-1040
[8]  
Centers for Disease Control and Prevention (CDC), 2011, ANTHR REF DAT CHILDR
[9]   Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies [J].
Chan, D. S. M. ;
Vieira, A. R. ;
Aune, D. ;
Bandera, E. V. ;
Greenwood, D. C. ;
McTiernan, A. ;
Rosenblatt, D. Navarro ;
Thune, I. ;
Vieira, R. ;
Norat, T. .
ANNALS OF ONCOLOGY, 2014, 25 (10) :1901-1914
[10]   Inflammatory breast cancer and body mass index [J].
Chang, S ;
Buzdar, AU ;
Hursting, SD .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (12) :3731-3735