Design of the optical system for the gamma factory proof of principle experiment at the CERN Super Proton Synchrotron

被引:6
作者
Martens, Aurelien [1 ]
Cassou, Kevin [1 ]
Chiche, Ronic [1 ]
Dupraz, Kevin [1 ]
Nutarelli, Daniele [1 ]
Peinaud, Yann [1 ]
Zomer, Fabian [1 ]
Dutheil, Yann [2 ]
Goddard, Brennan [2 ]
Krasny, Mieczyslaw Witold [2 ]
Lefevre, Thibaut [2 ]
Velotti, Francesco Maria [2 ]
机构
[1] Univ Paris Saclay, CNRS, IJCLab, IN2P3, F-91405 Orsay, France
[2] CERN, CH-1211 Geneva, Switzerland
关键词
FABRY-PEROT CAVITY; FREQUENCY; LASER; ENERGY; PHASE; STABILIZATION; POLARIZATION; PERFORMANCE; POWER; BEAM;
D O I
10.1103/PhysRevAccelBeams.25.101601
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Gamma Factory proof of principle experiment aims at colliding laser pulses with ultrarelativistic partially stripped ion beams at the CERN Super Proton Synchrotron. Its goals include the first demonstration of fast cooling of ultrarelativistic ion beams and opening up many possibilities for new physics measurements in various domains from atomic physics to particle physics. A high average-power, pulsed laser system delivering approximately 200 kW needs to be implemented for this aim. This is possible thanks to state-of-the-art optical systems that recently demonstrated similar performances in the laboratory environment. Challenges lie in the implementation of this kind of laser system in the harsh environment of hadronic machines including their robust and fully remote operation. The design of this laser system, involving a high quality factor enhancement cavity, is drawn and described in this article. Mitigation procedures are proposed to overcome limitations imposed by the occurrence of degenerate highorder mode at high average power in such optical resonators. We show that the operation at average power above 200 kW is feasible.
引用
收藏
页数:11
相关论文
共 59 条
[1]   The Qweak experimental apparatus [J].
Allison, T. ;
Anderson, M. ;
Androic, D. ;
Armstrong, D. S. ;
Asaturyan, A. ;
Averett, T. ;
Averill, R. ;
Balewski, J. ;
Beaufait, J. ;
Beminiwattha, R. S. ;
Benesch, J. ;
Benmokhtar, F. ;
Bessuille, J. ;
Birchall, J. ;
Bonnelli, E. ;
Bowman, J. D. ;
Brindza, P. ;
Brown, D. B. ;
Carlini, R. D. ;
Cates, G. D. ;
Cavness, B. ;
Clark, G. ;
Cornejo, J. C. ;
Dusa, S. Covrig ;
Dalton, M. M. ;
Davis, C. A. ;
Dean, D. C. ;
Deconinck, W. ;
Diefenbach, J. ;
Dow, K. ;
Dowd, J. F. ;
Dunne, J. A. ;
Dutta, D. ;
Duvall, W. S. ;
Echols, J. R. ;
Elaasar, M. ;
Falk, W. R. ;
Finelli, K. D. ;
Finn, J. M. ;
Gaskell, D. ;
Gericke, M. T. W. ;
Grames, J. ;
Gray, V. M. ;
Grimm, K. ;
Guo, F. ;
Hansknecht, J. ;
Harrison, D. J. ;
Henderson, E. ;
Hoskins, J. R. ;
Ihloff, E. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 781 :105-133
[2]   Modal instability suppression in a high-average-power and high-finesse Fabry-Perot cavity [J].
Amoudry, Loic ;
Wang, Huan ;
Cassou, Kevin ;
Chiche, Ronic ;
Dupraz, Kevin ;
Martens, Aurelien ;
Nutarelli, Daniele ;
Soskov, Viktor ;
Zomer, Fabian .
APPLIED OPTICS, 2020, 59 (01) :116-121
[3]  
Apyan A., IN PRESS
[4]   Probing Axion-Like-Particles at the CERN Gamma Factory [J].
Balkin, Reuven ;
Krasny, Mieczyslaw W. ;
Ma, Teng ;
Safdi, Benjamin R. ;
Soreq, Yotam .
ANNALEN DER PHYSIK, 2022, 534 (03)
[5]  
Bartosik H., 2019, P 9 LHC OPERATIONS E, P51
[6]   A high precision Fabry-Perot cavity polarimeter at HERA [J].
Baudrand, S. ;
Bouchel, M. ;
Brisson, V. ;
Chiche, R. ;
Jacquet, M. ;
Kurbasov, S. ;
Li, G. ;
Pascaud, C. ;
Reboux, A. ;
Soskov, V. ;
Zhang, Z. ;
Zomer, F. ;
Beckingham, M. ;
Behnke, T. ;
Coppola, N. ;
Meyners, N. ;
Pitzl, D. ;
Schmitt, S. ;
Authier, M. ;
Deck-Betinelli, P. ;
Queinec, Y. ;
Pinard, L. .
JOURNAL OF INSTRUMENTATION, 2010, 5
[7]   Optical Excitation of Ultra-Relativistic Partially Stripped Ions [J].
Bieron, Jacek ;
Krasny, Mieczyslaw Witold ;
Placzek, Wieslaw ;
Pustelny, Szymon .
ANNALEN DER PHYSIK, 2022, 534 (03)
[8]   An introduction to Pound-Drever-Hall laser frequency stabilization [J].
Black, ED .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (01) :79-87
[9]  
Blanc F., 2022, P OPTICA HIGH BRIGHT, pEF4A
[10]   CALCULATIONS OF THE SCREENED SELF-ENERGY AND VACUUM POLARIZATION IN LI-LIKE, NA-LIKE, AND CU-LIKE IONS [J].
BLUNDELL, SA .
PHYSICAL REVIEW A, 1993, 47 (03) :1790-1803