Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses

被引:15
作者
Barrios, Tomas P. [1 ]
Manuel Cascon, J. [2 ]
Gonzalez, Maria [3 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemdt Fis Aplicadas, Casilla 297, Concepcion, Chile
[2] Univ Salamanca, Dept Econ Historia Econom, Salamanca 37008, Spain
[3] Univ A Coruna, Dept Matemat, Campus Elvilia S-N, La Coruna, Spain
关键词
Incompressible flow; Oseen equation; Mixed finite element; Stabilized finite elements; A posteriori error estimator; STOKES; FORMULATION; ESTIMATORS;
D O I
10.1016/j.cma.2016.09.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a new augmented dual-mixed method for the Oseen problem based on the pseudostress velocity formulation. The stabilized formulation is obtained by adding to the dual-mixed approach suitable least squares terms that arise from the constitutive and equilibrium equations. We prove that for appropriate values of the stabilization parameters, the new variational formulation and the corresponding Galerkin scheme are well-posed, and a Cea estimate holds for any finite element subspaces. We also provide the rate of convergence when each row of the pseudostress is approximated by Raviart Thomas or Brezzi Douglas Marini elements and the velocity is approximated by continuous piecewise polynomials. Moreover, we derive a simple a posteriori error estimator of residual type that consists of two residual terms and prove that it is reliable and locally efficient. Finally, we include several numerical experiments that support the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 238
页数:23
相关论文
共 28 条
[1]   A posteriori error estimators for the Stokes and Oseen equations [J].
Ainsworth, M ;
Oden, JT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :228-245
[2]  
[Anonymous], 2005, LNCSE
[3]   Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem [J].
Apel, Thomas ;
Knopp, Tobias ;
Lube, Gert .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (12) :1830-1843
[4]   A FAMILY OF HIGHER-ORDER MIXED FINITE-ELEMENT METHODS FOR PLANE ELASTICITY [J].
ARNOLD, DN ;
DOUGLAS, J ;
GUPTA, CP .
NUMERISCHE MATHEMATIK, 1984, 45 (01) :1-22
[5]   A residual local projection method for the Oseen equation [J].
Barrenechea, Gabriel R. ;
Valentin, Frederic .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (29-32) :1906-1921
[6]   A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity [J].
Barrios, Tomas P. ;
Gatica, Gabriel N. ;
Gonzalez, Maria ;
Heuer, Norbert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05) :843-869
[7]   A posteriori error analysis of an augmented mixed finite element method for Darcy flow [J].
Barrios, Tomas P. ;
Manuel Cascon, J. ;
Gonzalez, Maria .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 :909-922
[8]   Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity [J].
Barrios, Tomas P. ;
Behrens, Edwin M. ;
Gonzalez, Maria .
APPLIED NUMERICAL MATHEMATICS, 2014, 84 :46-65
[9]   On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates [J].
Barrios, Tomas P. ;
Bustinza, Rommel ;
Garcia, Galina C. ;
Hernandez, Erwin .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 237 :78-87
[10]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199