SPECTRAL APPROXIMATION OF ELLIPTIC OPERATORS BY THE HYBRID HIGH-ORDER METHOD

被引:19
作者
Calo, Victor [1 ,2 ]
Cicuttin, Matteo [3 ,4 ]
Deng, Quanling [1 ,5 ]
Ern, Alexandre [3 ,4 ]
机构
[1] Curtin Univ, Dept Appl Geol, Western Australian Sch Mines, Kent St, Perth, WA 6102, Australia
[2] CSIRO, Mineral Resources, Perth, WA 6152, Australia
[3] Univ Paris Est, CERMICS ENPC, F-77455 Marne La Vallee 2, France
[4] Inria Paris, F-75589 Paris, France
[5] Curtin Univ, Curtin Inst Computat, Western Australian Sch Mines, Kent St, Perth, WA 6102, Australia
基金
欧盟地平线“2020”;
关键词
Hybrid high-order methods; eigenvalue approximation; eigenfunction approximation; spectrum analysis; error analysis; DISCONTINUOUS-SKELETAL METHOD; FINITE-ELEMENT-METHOD; QUADRATURE-RULES; GALERKIN METHODS; EIGENVALUE; HYBRIDIZATION; DIFFUSION; EQUATIONS;
D O I
10.1090/mcom/3405
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the approximation of the spectrum of a second-order elliptic differential operator by the Hybrid High-Order (HHO) method. The HHO method is formulated using cell and face unknowns which are polynomials of some degree k >= 0. The key idea for the discrete eigenvalue problem is to introduce a discrete operator where the face unknowns have been eliminated. Using the abstract theory of spectral approximation of compact operators in Hilbert spaces, we prove that the eigenvalues converge as h(2t) and the eigenfunctions as h(t) in the H-1-seminorm, where h is the mesh-size, t is an element of [s, k +1]depends on the smoothness of the eigenfunctions, and s > 1/2 results from the elliptic regularity theory. The convergence rates for smooth eigenfunctions are thus h(2k+2) for the eigenvalues and h(k+1) for the eigenfunctions. Our theoretical findings, which improve recent error estimates for Hybridizable Discontinuous Galerkin (HDG) methods, are verified on various numerical examples including smooth and non-smooth eigenfunctions. Moreover, we observe numerically in one dimension for smooth eigenfunctions that the eigenvalues superconverge as h(2k+4) for a specific value of the stabilization parameter.
引用
收藏
页码:1559 / 1586
页数:28
相关论文
共 47 条
  • [1] Hybrid High-Order methods for finite deformations of hyperelastic materials
    Abbas, Mickael
    Ern, Alexandre
    Pignet, Nicolas
    [J]. COMPUTATIONAL MECHANICS, 2018, 62 (04) : 909 - 928
  • [2] OPTIMALLY BLENDED SPECTRAL-FINITE ELEMENT SCHEME FOR WAVE PROPAGATION AND NONSTANDARD REDUCED INTEGRATION
    Ainsworth, Mark
    Wajid, Hafiz Abdul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) : 346 - 371
  • [3] [Anonymous], 1967, Z. Vycisl. Mat. i Mat. Fiz.
  • [4] Discontinuous Galerkin approximation of the Laplace eigenproblem
    Antonietti, Paola F.
    Buffa, Annalisa
    Perugia, Ilaria
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3483 - 3503
  • [5] AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS
    ARNOLD, DN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) : 742 - 760
  • [6] Babuska I., 1991, Finite element methods, V2, P640
  • [7] Reviving the method of particular solutions
    Betcke, T
    Trefethen, LN
    [J]. SIAM REVIEW, 2005, 47 (03) : 469 - 491
  • [8] Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8
  • [9] Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
  • [10] BRAMBLE JH, 1973, MATH COMPUT, V27, P525, DOI 10.1090/S0025-5718-1973-0366029-9