Estimating population proportions in the presence of missing data

被引:7
|
作者
Alvarez, E. [2 ]
Arcos, A. [1 ]
Gonzalez, S.
Munoz, J. F. [2 ]
Rueda, M. [1 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat & OR, E-18071 Granada, Spain
[2] Univ Jaen, Dept Stat & OR, Jaen, Spain
关键词
Auxiliary information; Missing data; Ratio and difference estimators;
D O I
10.1016/j.cam.2012.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the estimation of a population proportion in the presence of missing data and using auxiliary information at the estimation stage. A general class of estimators, which make efficient use of the available information, are proposed. Some theoretical properties of the proposed estimators are analyzed, and they allow us to find the optimal value for the proposed class in the sense of minimal variance. The optimal estimator is thus more efficient than the customary estimator. Results derived from a simulation study indicate that the proposed optimal estimator gives desirable results in comparison to alternative estimators. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 50 条
  • [41] Improved Estimators of the Population Mean for Missing Data
    Diana, Giancarlo
    Perri, Pier Francesco
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (18) : 3245 - 3251
  • [42] Adaptive Radar Detection in the Presence of Missing-data
    Aubry, Augusto
    Carotenuto, Vincenzo
    De Maio, Antonio
    Rosamilia, Massimo
    Marano, Stefano
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (04) : 3283 - 3296
  • [43] Pseudo empirical likelihood method in the presence of missing data
    M. Rueda
    J. F. Muñoz
    Y. G. Berger
    A. Arcos
    S. Martínez
    Metrika, 2007, 65 : 349 - 367
  • [44] Hypothesis test for paired samples in the presence of missing data
    Martinez-Camblor, Pablo
    Corral, Norberto
    Maria de la Hera, Jesus
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (01) : 76 - 87
  • [45] Variable selection in the presence of missing data: resampling and imputation
    Long, Qi
    Johnson, Brent A.
    BIOSTATISTICS, 2015, 16 (03) : 596 - 610
  • [46] Evaluation of statistical methods for estimating missing daily streamflow data
    Yilmaz M.U.
    Önöz B.
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2019, 30 (06): : 9597 - 9620
  • [47] Estimating measurement error of the Oswestry Disability Index with missing data
    McNeely, Emmanuel L.
    Zhang, Bo
    Neuman, Brian J.
    Skolasky, Richard L.
    SPINE JOURNAL, 2022, 22 (06) : 975 - 982
  • [48] Estimating missing data of wind speeds using neural network
    Siripitayananon, P
    Chen, HC
    Jin, KR
    IEEE SOUTHEASTCON 2002: PROCEEDINGS, 2002, : 343 - 348
  • [49] A novel method for estimating missing values in ship principal data
    Kim, Youngrong
    Steen, Sverre
    Muri, Helene
    OCEAN ENGINEERING, 2022, 251
  • [50] Generalized empirical likelihood for nonsmooth estimating equations with missing data
    Cui, Li-E
    Zhao, Puying
    Tang, Niansheng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190