Estimating population proportions in the presence of missing data

被引:7
|
作者
Alvarez, E. [2 ]
Arcos, A. [1 ]
Gonzalez, S.
Munoz, J. F. [2 ]
Rueda, M. [1 ]
机构
[1] Univ Granada, Fac Sci, Dept Stat & OR, E-18071 Granada, Spain
[2] Univ Jaen, Dept Stat & OR, Jaen, Spain
关键词
Auxiliary information; Missing data; Ratio and difference estimators;
D O I
10.1016/j.cam.2012.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the estimation of a population proportion in the presence of missing data and using auxiliary information at the estimation stage. A general class of estimators, which make efficient use of the available information, are proposed. Some theoretical properties of the proposed estimators are analyzed, and they allow us to find the optimal value for the proposed class in the sense of minimal variance. The optimal estimator is thus more efficient than the customary estimator. Results derived from a simulation study indicate that the proposed optimal estimator gives desirable results in comparison to alternative estimators. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 50 条
  • [21] Working with population totals in the presence of missing data comparing imputation methods in terms of bias and precision
    Onkelinx, Thierry
    Devos, Koen
    Quataert, Paul
    JOURNAL OF ORNITHOLOGY, 2017, 158 (02) : 603 - 615
  • [22] Caution in the interpretation of association in presence of missing data
    Croiseau, P
    Clerget-Darpoux, F
    Babron, MC
    Génin, E
    ANNALS OF HUMAN GENETICS, 2005, 69 : 766 - 766
  • [23] Flexible variable selection in the presence of missing data
    Williamson, Brian D.
    Huang, Ying
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2024, 20 (02) : 347 - 359
  • [24] A predictive estimator of finite population proportion despite missing data
    Rueda, M.
    Gonzalez, S.
    Arcos, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 1 - 9
  • [25] Estimating the cost-effectiveness of fluticasone propionate for treating chronic obstructive pulmonary disease in the presence of missing data
    Briggs, Andrew H.
    Lozano-Ortega, Greta
    Spencer, Sally
    Bale, Geraldine
    Spencer, Michael D.
    Burge, P. Sherwood
    VALUE IN HEALTH, 2006, 9 (04) : 227 - 235
  • [26] Estimating and using propensity scores with partially missing data
    D'Agostino, RB
    Rubin, DB
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) : 749 - 759
  • [27] A bayesian approach for estimating and replacing missing categorical data
    Li, Xiao-Bai
    Journal of Data and Information Quality, 2009, 1 (01)
  • [28] Testing for multivariate outliers in the presence of missing data
    Woodward, WA
    Sain, SR
    Grah, HL
    Zhao, BJ
    Fisk, MD
    PURE AND APPLIED GEOPHYSICS, 2002, 159 (04) : 889 - 903
  • [29] ESTIMATING CORRELATIONS WITH MISSING DATA, A BAYESIAN-APPROACH
    GROSS, AL
    TORRESQUEVEDO, R
    PSYCHOMETRIKA, 1995, 60 (03) : 341 - 354
  • [30] Comparison methods of estimating missing data in real data time series
    Tasho, Eljona Milo
    Zeqo, Lorena Margo
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (10)