A multiplicity theorem for the Neumann problem

被引:16
作者
Ricceri, B [1 ]
机构
[1] Univ Catania, Dept Math, I-95125 Catania, Italy
关键词
Neumann problem; multiplicity of solutions; global minima; connected components;
D O I
10.1090/S0002-9939-05-08113-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here is a particular case of the main result of this paper: Let.. R-n be a bounded domain, with a boundary of class C-2, and let f,g : R. R be two continuous functions, alpha is an element of L-infinity(Omega), with ess inf(Omega)a > 0, beta is an element of L-p(Omega), with p > n. If [graphics] and if the set of all global minima of the function xi ->xi(2)/2 - integral(xi)(0) f(t)dt has at least k >= 2 connected components, then, for each lambda > 0 small enough, the Neumann problem [graphics] admits at least k + 1 strong solutions in W-2,W-p(Omega).
引用
收藏
页码:1117 / 1124
页数:8
相关论文
共 8 条
[1]  
AMBROSETTI A, 1974, PERTURBATION THEOREM
[2]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[3]   Perturbations from symmetric elliptic boundary value problems [J].
Li, SJ ;
Liu, ZL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) :271-280
[4]   Solutions of some nonlinear elliptic problems with perturbation terms of arbitrary growth [J].
Liu, ZL ;
Su, JB .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03) :617-634
[5]  
RICCERI B, 2004, J NONLINEAR CONVEX A, V5
[6]  
SIMADER CG, IN PRESS BAYREUTH MA
[7]  
STAMPACCHIA G, 1958, ANN SCUOLA NORM SUP, V12, P223
[8]  
Zeidler E., 1985, Nonlinear functional analysis and its applications, VIII, DOI DOI 10.1007/978-1-4612-5020-3