A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory

被引:36
作者
Buffoni, B [1 ]
Groves, MD
机构
[1] Swiss Fed Inst Technol, Dept Math, CH-1015 Lausanne, Switzerland
[2] Loughborough Univ Technol, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
10.1007/s002050050141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:183 / 220
页数:38
相关论文
共 38 条
[1]  
Abraham R., 2012, Manifolds, tensor analysis, and applications, V75
[2]  
AMBROSETTI A, 1992, CR ACAD SCI I-MATH, V314, P601
[3]  
AMICK CJ, 1989, ARCH RATION MECH AN, V105, P1
[4]  
ANGENENT S, 1993, SYMPLECTIC GEOMETRY, P5
[5]   UNIFORMLY TRAVELING WATER-WAVES FROM A DYNAMIC-SYSTEMS VIEWPOINT - SOME INSIGHTS INTO BIFURCATIONS FROM STOKES FAMILY [J].
BAESENS, C ;
MACKAY, RS .
JOURNAL OF FLUID MECHANICS, 1992, 241 :333-347
[7]   HAMILTONIAN-STRUCTURE, SYMMETRIES AND CONSERVATION-LAWS FOR WATER-WAVES [J].
BENJAMIN, TB ;
OLVER, PJ .
JOURNAL OF FLUID MECHANICS, 1982, 125 (DEC) :137-185
[8]  
BESSI U, 1995, ANN I H POINCARE-AN, V12, P1
[9]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[10]   A proof of the Benjamin-Feir instability [J].
Bridges, TJ ;
Mielke, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (02) :145-198