Computer Assisted Classification of Dental Radiography

被引:0
作者
Hsu, Chih-Yu [2 ]
Tseng, Kuo-Kun [1 ]
Chen, Shuo-Tsung [2 ]
Huang, Chih-Hao [3 ,4 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[2] Chao Yang Univ Technol, Dept Informat & Commun Engn, Taichung 41349, Taiwan
[3] Buddhist Tzu Chi Gen Hosp, Dept Dent, Hualien 97002, Taiwan
[4] Buddhist Tzu Chi Univ, Dept Med, Hualien 97002, Taiwan
关键词
Dental Periapical Radiography; Image Processing; Feature Computing; Rule Decisions for Classifying; SEGMENTATION; IMAGES;
D O I
10.1166/jno.2012.1238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dental radiographs have been extensively used in diagnosing dental diseases to help dentist for identifying victims of disasters. This study describes a flowchart of an automatic classification method for digital dental radiography. Thirty subjects were collected dental radiographs for this experiment. For each subject, there are fourteen different positions to take the X-ray images around the patient's mouth. A computer program was developed to automatically classify the fourteen classes of dental images, Upper Center Incisor (UCI), Lower Center Incisor (LCI), Upper Right Canine (URC), Upper Left Canine (ULC), Lower Right Canine (LRC), Lower Left Canine (LLC), Upper Right Premolar (URP), Upper Left Premolar (ULP), Lower Right Premolar (LRP), Lower Left Premolar (LLP), Upper Right Molar (URM), Upper Left Molar (ULM), Lower Right Molar (LRM) and Lower Left Molar (LLM). The classification method for digital dental radiography included image processing, feature computing and rule decisions for classifying. The results were compared with those of an experienced dentist. There were 420 images used to test the performance of proposed method. The accuracy of the classification is 80.5% (338/420).
引用
收藏
页码:220 / 223
页数:4
相关论文
共 50 条
  • [21] The perceptibility curve test applied to direct digital dental radiography
    Yoshiura, K
    Stamatakis, H
    Shi, XQ
    Welander, U
    McDavid, WD
    Kristoffersen, J
    Tronje, G
    DENTOMAXILLOFACIAL RADIOLOGY, 1998, 27 (03) : 131 - 135
  • [22] THE FEATURE SELECTION PROBLEM IN COMPUTER-ASSISTED CYTOLOGY
    Kowal, Marek
    Skobel, Marcin
    Nowicki, Norbert
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2018, 28 (04) : 759 - 770
  • [23] Strut analysis for osteoporosis detection model using dental panoramic radiography
    Hwang, Jae Joon
    Lee, Jeong-Hee
    Han, Sang-Sun
    Kim, Young Hyun
    Jeong, Ho-Gul
    Choi, Yoon Jeong
    Park, Wonse
    DENTOMAXILLOFACIAL RADIOLOGY, 2017, 46 (07)
  • [24] A new method for the automated alignment of dental radiographs for digital subtraction radiography
    Yoon, DC
    DENTOMAXILLOFACIAL RADIOLOGY, 2000, 29 (01) : 11 - 19
  • [25] Comparative Evaluation of Conventional and OnyxCeph™ Dental Software Measurements on Cephalometric Radiography
    Izgi, Elif
    Pekiner, Filiz Namdar
    TURKISH JOURNAL OF ORTHODONTICS, 2019, 32 (02) : 87 - 95
  • [26] Computer-aided diagnosis in chest radiography: Beyond nodules
    van Ginneken, Bram
    Hogeweg, Laurens
    Prokop, Mathias
    EUROPEAN JOURNAL OF RADIOLOGY, 2009, 72 (02) : 226 - 230
  • [27] Computer assisted age progression
    Gibson, S. J.
    Scandrett, C. M.
    Solomon, C. J.
    Maylin, M. I. S.
    Wilkinson, C. M.
    FORENSIC SCIENCE MEDICINE AND PATHOLOGY, 2009, 5 (03) : 174 - 181
  • [28] Computer assisted age progression
    S. J. Gibson
    C. M. Scandrett
    C. J. Solomon
    M. I. S. Maylin
    C. M. Wilkinson
    Forensic Science, Medicine, and Pathology, 2009, 5 : 174 - 181
  • [29] Computer assisted Seed Identification
    Coetzee, L
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 98) - PROCEEDINGS, VOLS 1 AND 2, 1998, : 589 - 593
  • [30] Blood type classification using computer vision and machine learning
    Ferraz, Ana
    Brito, Jose Henrique
    Carvalho, Vitor
    Machado, Jose
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 (08) : 2029 - 2040