Expediting the electrochemical kinetics of 3D-printed sulfur cathodes for Li-S batteries with high rate capability and areal capacity

被引:61
作者
Cai, Jingsheng [1 ]
Fan, Zhaodi [1 ]
Jin, Jia [1 ]
Shi, Zixiong [1 ]
Dou, Shixue [2 ]
Sun, Jingyu [1 ]
Liu, Zhongfan [1 ,3 ]
机构
[1] Soochow Univ, Key Lab Adv Carbon Mat & Wearable Energy Technol, Soochow Inst Energy & Mat InnovationS SIEMIS, Coll Energy, Suzhou 215006, Jiangsu, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[3] Peking Univ, Coll Chem & Mol Engn, Beijing Sci & Engn Ctr Nanocarbons, Ctr Nanochemistry CNC, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; lithium-sulfur battery; Free-standing; Electrochemical kinetics; High areal capacity; HOST; REDOX;
D O I
10.1016/j.nanoen.2020.104970
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
3D printing has stimulated burgeoning interest in customized design of sulfur cathodes for Li-S batteries tar geting advanced electrochemical performances. Nevertheless, the prevailing 3D-printed sulfur electrodes are solely based on carbonaceous materials; constructing electrocatalyst-equipped cathode to help expedite sulfur redox kinetics remains unexplored thus far. Herein, we develop a free-standing sulfur cathode via 3D printing using hybrid ink encompassing sulfur/carbon and metallic LaB6 electrocatalyst. Such unique architectures with optimized Li+/e(-) transport and ample porosity are in favor of efficient polysulfide regulation. Accordingly, an initial capacity of 693 mAh g(-1) can be achieved at 6.0 degrees C accompanied by a low capacity fading rate of 0.067% per cycle over 800 cycles (with a sulfur loading of 1.5 mg cm(-2)). To envisage practical applications, elevated sulfur loadings from 3.3 to 9.3 mg cm(-2) are further evaluated. Our study marks the first-time investigation on the introduction of efficient electrocatalyst into the printable ink for the construction of 3D-printed Li-S battery harnessing high rate capability and areal capacity.
引用
收藏
页数:8
相关论文
共 47 条
[41]   Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li-S Battery [J].
Wahyudi, Wandi ;
Cao, Zhen ;
Kumar, Pushpendra ;
Li, Mengliu ;
Wu, Yingqiang ;
Hedhili, Mohammed N. ;
Anthopoulos, Thomas D. ;
Cavallo, Luigi ;
Li, Lain-Jong ;
Ming, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (34)
[42]   Self-Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for High-Energy-Density Lithium-Sulfur Batteries [J].
Wang, Zhuosen ;
Shen, Jiadong ;
Liu, Jun ;
Xu, Xijun ;
Liu, Zhengbo ;
Hu, Renzong ;
Yang, Lichun ;
Feng, Yuezhan ;
Shi, Zhicong ;
Ouyang, Liuzhang ;
Yu, Yan ;
Zhu, Min .
ADVANCED MATERIALS, 2019, 31 (33)
[43]   Integrating Conductivity, Immobility, and Catalytic Ability into High-N Carbon/Graphene Sheets as an Effective Sulfur Host [J].
Xu, Huifang ;
Jiang, Qingbin ;
Zhang, Bingkai ;
Chen, Chao ;
Lin, Zhan .
ADVANCED MATERIALS, 2020, 32 (07)
[44]   Nanostructured sulfur cathodes [J].
Yang, Yuan ;
Zheng, Guangyuan ;
Cui, Yi .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :3018-3032
[45]   A Review of Functional Binders in Lithium-Sulfur Batteries [J].
Yuan, Hong ;
Huang, Jia-Qi ;
Peng, Hong-Jie ;
Titirici, Maria-Magdalena ;
Xiang, Rong ;
Chen, Renjie ;
Liu, Quanbing ;
Zhang, Qiang .
ADVANCED ENERGY MATERIALS, 2018, 8 (31)
[46]   Single-crystalline LaB6 nanowires [J].
Zhang, H ;
Zhang, Q ;
Tang, I ;
Qin, LC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (09) :2862-2863
[47]   Activating Inert Metallic Compounds for High-Rate Lithium -Sulfur Batteries Through In Situ Etching of Extrinsic Metal [J].
Zhao, Meng ;
Peng, Hong-Jie ;
Zhang, Ze-Wen ;
Li, Bo-Quan ;
Chen, Xiao ;
Xie, Jin ;
Chen, Xiang ;
Wei, Jun-Yu ;
Zhang, Qiang ;
Huang, Jia-Qi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (12) :3779-3783