Finding a succinct multi-layer perceptron having shared weights

被引:0
作者
Tanahashi, Y [1 ]
Chin, XF [1 ]
Saito, K [1 ]
Nakano, R [1 ]
机构
[1] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
来源
PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5 | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method to find a succinct neural network having shared weights. We focus on weight sharing. Weight sharing constrains the freedom of weight values and weights are allowed to have one of common weights. A near-zero common weight can be eliminated, called weight pruning. Recently, a weight sharing method called BCW has been proposed. The BCW employs merge and split operations based on 2nd-order optimal criteria, and can escape local optima through bidirectional clustering. However, the BCW assumes a vital network parameter J, the number of hidden units, is given. This paper modifies the BCW to make the procedure faster so that the selection of J based on cross-validation can be done in reasonable cpu time. Our experiments showed that the proposed method can restore the original model for an artificial data set, and finds a small number of common weights and an interesting tendency for a real data set.
引用
收藏
页码:1418 / 1423
页数:6
相关论文
共 50 条
  • [21] Multiple optimal learning factors for the multi-layer perceptron
    Malalur, Sanjeev S.
    Manry, Michael T.
    Jesudhas, Praveen
    NEUROCOMPUTING, 2015, 149 : 1490 - 1501
  • [22] Monotonic multi-layer perceptron networks as universal approximators
    Lang, B
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 31 - 37
  • [23] Geno-mathematical identification of the multi-layer perceptron
    Ralf Östermark
    Neural Computing and Applications, 2009, 18 : 331 - 344
  • [24] Modifications of the Multi-Layer Perceptron for Hyperspectral Image Classification
    He, Xin
    Chen, Yushi
    REMOTE SENSING, 2021, 13 (17)
  • [25] An efficient implementation of multi-layer perceptron on mesh architecture
    Ayoubi, RA
    Bayoumi, MA
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL II, PROCEEDINGS, 2002, : 109 - 112
  • [26] A Study on Single and Multi-layer Perceptron Neural Network
    Singh, Jaswinder
    Banerjee, Rajdeep
    PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), 2019, : 35 - 40
  • [27] Training multi-layer perceptron with artificial algae algorithm
    Turkoglu, Bahaeddin
    Kaya, Ersin
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2020, 23 (06): : 1342 - 1350
  • [28] Many-objective training of a multi-layer perceptron
    Koeppen, Mario
    Yoshida, Kaori
    NEURAL NETWORK WORLD, 2007, 17 (06) : 627 - 637
  • [29] A Stochastic Computational Multi-Layer Perceptron with Backward Propagation
    Liu, Yidong
    Liu, Siting
    Wang, Yanzhi
    Lombardi, Fabrizio
    Han, Jie
    IEEE TRANSACTIONS ON COMPUTERS, 2018, 67 (09) : 1273 - 1286
  • [30] A novel scheme to determine the architecture of a Multi-layer Perceptron
    Chintalapudi, KK
    Pal, NR
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2297 - 2302