Latent Complete Row Space Recovery for Multi-View Subspace Clustering

被引:56
作者
Tao, Hong [1 ]
Hou, Chenping [1 ]
Qian, Yuhua [2 ]
Zhu, Jubo [1 ]
Yi, Dongyun [1 ]
机构
[1] Natl Univ Def Technol, Dept Syst Sci, Coll Sci, Changsha 410073, Peoples R China
[2] Shanxi Univ, Inst Big Data Sci & Ind, Taiyuan 030006, Peoples R China
关键词
Clustering algorithms; Clustering methods; Video surveillance; Sparse matrices; Tensile stress; Unsupervised learning; Approximation algorithms; Multi-view clustering; subspace clustering; latent representation; row space recovery; ALGORITHM; SHAPE;
D O I
10.1109/TIP.2020.3010631
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view subspace clustering has been applied to applications such as image processing and video surveillance, and has attracted increasing attention. Most existing methods learn view-specific self-representation matrices, and construct a combined affinity matrix from multiple views. The affinity construction process is time-consuming, and the combined affinity matrix is not guaranteed to reflect the whole true subspace structure. To overcome these issues, the Latent Complete Row Space Recovery (LCRSR) method is proposed. Concretely, LCRSR is based on the assumption that the multi-view observations are generated from an underlying latent representation, which is further assumed to collect the authentic samples drawn exactly from multiple subspaces. LCRSR is able to recover the row space of the latent representation, which not only carries complete information from multiple views but also determines the subspace membership under certain conditions. LCRSR does not involve the graph construction procedure and is solved with an efficient and convergent algorithm, thereby being more scalable to large-scale datasets. The effectiveness and efficiency of LCRSR are validated by clustering various kinds of multi-view data and illustrated in the background subtraction task.
引用
收藏
页码:8083 / 8096
页数:14
相关论文
共 45 条
[1]  
[Anonymous], 2012, NIPS
[2]   On the convergence of the proximal algorithm for nonsmooth functions involving analytic features [J].
Attouch, Hedy ;
Bolte, Jerome .
MATHEMATICAL PROGRAMMING, 2009, 116 (1-2) :5-16
[3]  
Basri R, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P383, DOI 10.1109/ICCV.2001.937651
[4]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[5]   Multiple Object Tracking Using K-Shortest Paths Optimization [J].
Berclaz, Jerome ;
Fleuret, Francois ;
Tueretken, Engin ;
Fua, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (09) :1806-1819
[6]   Multi-view clustering [J].
Bickel, S ;
Scheffer, T .
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, :19-26
[7]  
Blum A., 1998, Proceedings of the Eleventh Annual Conference on Computational Learning Theory, P92, DOI 10.1145/279943.279962
[8]   Multi-view low-rank sparse subspace clustering [J].
Brbic, Maria ;
Kopriva, Ivica .
PATTERN RECOGNITION, 2018, 73 :247-258
[9]   The landscape of microbial phenotypic traits and associated genes [J].
Brbic, Maria ;
Piskorec, Matija ;
Vidulin, Vedrana ;
Krisko, Anita ;
Smuc, Tomislav ;
Supek, Fran .
NUCLEIC ACIDS RESEARCH, 2016, 44 (21) :10074-10090
[10]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215