Person Re-Identification by Deep Learning Multi-Scale Representations

被引:300
|
作者
Chen, Yanbei [1 ]
Zhu, Xiatian [2 ]
Gong, Shaogang [1 ]
机构
[1] Queen Mary Univ London, London, England
[2] Vis Semant Ltd, London, England
关键词
GLOBAL FEATURES;
D O I
10.1109/ICCVW.2017.304
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing person re-identification (re-id) methods depend mostly on single-scale appearance information. This not only ignores the potentially useful explicit information of other different scales, but also loses the chance of mining the implicit correlated complementary advantages across scales. In this work, we demonstrate the benefits of learning multi-scale person appearance features using Convolutional Neural Networks (CNN) by aiming to jointly learn discriminative scale-specific features and maximise multi-scale feature fusion selections in image pyramid inputs. Specifically, we formulate a novel Deep Pyramid Feature Learning (DPFL) CNN architecture for multi-scale appearance feature fusion optimised simultaneously by concurrent per-scale re-id losses and interactive cross-scale consensus regularisation in a closed-loop design. Extensive comparative evaluations demonstrate the re-id advantages of the proposed DPFL model over a wide range of state-of-the-art re-id methods on three benchmarks Market-1501, CUHK03, and DukeMTMC-reID.
引用
收藏
页码:2590 / 2600
页数:11
相关论文
共 50 条
  • [31] A Person Re-Identification Method with Multi-Scale and Multi-Feature Fusion
    Liu, Li
    Li, Xi
    Lei, Xuemei
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (12): : 1868 - 1876
  • [32] Multi-Branch Person Re-Identification Basedon Multi-Scale Attention
    Cong, Li
    Min, Jiang
    Jun, Kong
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (20)
  • [33] Multi-scale and multi-branch feature representation for person re-identification
    Jiao, Shanshan
    Pan, Zhisong
    Hu, Guyu
    Shen, Qing
    Du, Lin
    Chen, Yutian
    Wang, Jiabao
    NEUROCOMPUTING, 2020, 414 : 120 - 130
  • [34] An efficient multi-scale channel attention network for person re-identification
    Qian Luo
    Jie Shao
    Wanli Dang
    Long Geng
    Huaiyu Zheng
    Chang Liu
    The Visual Computer, 2024, 40 : 3515 - 3527
  • [35] Combination of validity aggregation and multi-scale feature for person re-identification
    Huang, Zhi-yong
    Qin, Wen-cheng
    Luo, Fen
    Guan, Tian-hui
    Xie, Fang
    Han, Shu
    Sun, Da-ming
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3353 - 3368
  • [36] MULTI-SCALE SPATIAL-TEMPORAL NETWORK FOR PERSON RE-IDENTIFICATION
    Wang, Zhikang
    He, Lihuo
    Gao, Xinbo
    Huang, Yuanfei
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2052 - 2056
  • [37] Multi-scale local-global architecture for person re-identification
    Liu, Jing
    Tiwari, Prayag
    Tri Gia Nguyen
    Gupta, Deepak
    Band, Shahab S.
    SOFT COMPUTING, 2022, 26 (16) : 7967 - 7977
  • [38] An efficient multi-scale channel attention network for person re-identification
    Luo, Qian
    Shao, Jie
    Dang, Wanli
    Geng, Long
    Zheng, Huaiyu
    Liu, Chang
    VISUAL COMPUTER, 2024, 40 (05): : 3515 - 3527
  • [39] SMSNet: A Novel Multi-scale Siamese Model for Person Re-Identification
    Tagore, Nirbhay Kumar
    Chattopadhyay, Pratik
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON E-BUSINESS AND TELECOMMUNICATIONS - DCNET, OPTICS, SIGMAP AND WINSYS (ICETE), VOL 2, 2020, : 103 - 112
  • [40] Combination of validity aggregation and multi-scale feature for person re-identification
    Zhi-yong Huang
    Wen-cheng Qin
    Fen Luo
    Tian-hui Guan
    Fang Xie
    Shu Han
    Da-ming Sun
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3353 - 3368