Energy stable and large time-stepping methods for the Cahn-Hilliard equation

被引:10
作者
Song, Huailing [1 ,2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Hong Kong Baptist Univ, Inst Theoret & Computat Studies, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
large time-stepping; implicit-explicit; Runge-Kutta; Cahn-Hilliard; energy stability; PARTIAL-DIFFERENTIAL-EQUATIONS; GENERAL LINEAR METHODS; FINITE-ELEMENT-METHOD; RUNGE-KUTTA METHODS; SCHEME; MODELS;
D O I
10.1080/00207160.2014.964694
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the numerical methods for the Cahn-Hilliard equation, which describes phase separation phenomenon. The goal of this paper is to construct high-order, energy stable and large time-stepping methods by using Eyre's convex splitting technique. The equation is discretized by using a fourth-order compact difference scheme in space and first-order, second-order or third-order implicit-explicit Runge-Kutta schemes in time. The energy stability for the first-order scheme is proved. Numerical experiments are given to demonstrate the performance of the proposed methods.
引用
收藏
页码:2091 / 2108
页数:18
相关论文
共 22 条
  • [1] [Anonymous], J MATH PURES APPL
  • [2] IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS
    ASCHER, UM
    RUUTH, SJ
    WETTON, BTR
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) : 797 - 823
  • [3] Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations
    Ascher, UM
    Ruuth, SJ
    Spiteri, RJ
    [J]. APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 151 - 167
  • [4] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [5] Extrapolated Implicit-Explicit Runge-Kutta Methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (01) : 18 - 43
  • [6] Extrapolation-based implicit-explicit general linear methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    [J]. NUMERICAL ALGORITHMS, 2014, 65 (03) : 377 - 399
  • [7] Applications of semi-implicit Fourier-spectral method to phase field equations
    Chen, LQ
    Shen, J
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) : 147 - 158
  • [8] Conservative nonlinear difference scheme for the Cahn-Hilliard equation - II
    Choo, SM
    Chung, SK
    Kim, KI
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) : 229 - 243
  • [9] EXTRAPOLATED IMPLICIT-EXPLICIT TIME STEPPING
    Constantinescu, Emil M.
    Sandu, Adrian
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) : 4452 - 4477
  • [10] Numerical study of the Cahn-Hilliard equation in one, two and three dimensions
    de Mello, EVL
    Filho, OTD
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 : 429 - 443