Membrane sculpting by curved DNA origami scaffolds

被引:158
作者
Franquelim, Henri G. [1 ]
Khmelinskaia, Alena [1 ,2 ]
Sobczak, Jean-Philippe [3 ,4 ]
Dietz, Hendrik [3 ,4 ]
Schwille, Petra [1 ]
机构
[1] Max Planck Inst Biochem, D-82152 Martinsried, Planegg, Germany
[2] Ludwig Maximilans Univ, Grad Sch Quantitat Biosci, D-81337 Munich, Germany
[3] Tech Univ Munich, Phys Dept, D-85748 Munich, Germany
[4] Tech Univ Munich, Inst Adv Study, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; SYNTHETIC BIOLOGY; NANOSCALE SHAPES; BAR DOMAINS; FOLDING DNA; CURVATURE; PROTEINS; NANOSTRUCTURES; VESICLES; BILAYERS;
D O I
10.1038/s41467-018-03198-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Membrane sculpting and transformation is essential for many cellular functions, thus being largely regulated by self-assembling and self-organizing protein coats. Their functionality is often encoded by particular spatial structures. Prominent examples are BAR domain proteins, the 'banana-like' shapes of which are thought to aid scaffolding and membrane tubulation. To elucidate whether 3D structure can be uncoupled from other functional features of complex scaffolding proteins, we hereby develop curved DNA origami in various shapes and stacking features, following the presumable design features of BAR proteins, and characterize their ability for membrane binding and transformation. We show that dependent on curvature, membrane affinity and surface density, DNA origami coats can indeed reproduce the activity of membrane-sculpting proteins such as BAR, suggesting exciting perspectives for using them in bottom-up approaches towards minimal biomimetic cellular machineries.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds [J].
Chen, Xiaoxing ;
Wang, Qian ;
Peng, Jin ;
Long, Qipeng ;
Yu, Hanyang ;
Li, Zhe .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (29) :24344-24348
[22]   Modulating Lipid Membrane Morphology by Dynamic DNA Origami Networks [J].
Yang, Juanjuan ;
Jahnke, Kevin ;
Xin, Ling ;
Jing, Xinxin ;
Zhan, Pengfei ;
Peil, Andreas ;
Griffo, Alessandra ;
Skugor, Marko ;
Yang, Donglei ;
Fan, Sisi ;
Goepfrich, Kerstin ;
Yan, Hao ;
Wang, Pengfei ;
Liu, Na .
NANO LETTERS, 2023, 23 (14) :6330-6336
[23]   Membrane-Assisted Growth of DNA Origami Nanostructure Arrays [J].
Kocabey, Samet ;
Kempter, Susanne ;
List, Jonathan ;
Xing, Yongzheng ;
Bae, Wooli ;
Schiffels, Daniel ;
Shih, William M. ;
Simmel, Friedrich C. ;
Liedl, Tim .
ACS NANO, 2015, 9 (04) :3530-3539
[24]   A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion [J].
Xu, Weiming ;
Nathwani, Bhavik ;
Lin, Chenxiang ;
Wan, Jing ;
Karatekin, Erdem ;
Pincet, Frederic ;
Shih, William ;
Rothman, James E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4439-4447
[25]   Toward Larger DNA Origami [J].
Marchi, Alexandria N. ;
Saaem, Ishtiaq ;
Vogen, Briana N. ;
Brown, Stanley ;
LaBean, Thomas H. .
NANO LETTERS, 2014, 14 (10) :5740-5747
[26]   DNA origami [J].
Dey, Swarup ;
Fan, Chunhai ;
Gothelf, Kurt, V ;
Li, Jiang ;
Lin, Chenxiang ;
Liu, Longfei ;
Liu, Na ;
Nijenhuis, Minke A. D. ;
Sacca, Barbara ;
Simmel, Friedrich C. ;
Yan, Hao ;
Zhan, Pengfei .
NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01)
[27]   Programmable Nanodisc Patterning by DNA Origami [J].
Zhang, Zhao ;
Chapman, Edwin R. .
NANO LETTERS, 2020, 20 (08) :6032-6037
[28]   Biotechnological mass production of DNA origami [J].
Praetorius, Florian ;
Kick, Benjamin ;
Behler, Karl L. ;
Honemann, Maximilian N. ;
Weuster-Botz, Dirk ;
Dietz, Hendrik .
NATURE, 2017, 552 (7683) :84-+
[29]   Knitting complex weaves with DNA origami [J].
Shih, William M. ;
Lin, Chenxiang .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2010, 20 (03) :276-282
[30]   Nanopores formed by DNA origami: A review [J].
Bell, Nicholas A. W. ;
Keyser, Ulrich F. .
FEBS LETTERS, 2014, 588 (19) :3564-3570