Thermal conductivity of microporous layers: Analytical modeling and experimental validation

被引:37
|
作者
Andisheh-Tadbir, Mehdi [1 ,2 ]
Kjeang, Erik [1 ]
Bahrami, Majid [1 ]
机构
[1] Simon Fraser Univ, Sch Mechatron Syst Engn, LAEC, Surrey, BC V3T 0A3, Canada
[2] Simon Fraser Univ, Sch Mechatron Syst Engn, Fuel Cell Res Lab FCReL, Surrey, BC V3T 0A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Micro-porous layer; Fuel cell; Analytical model; Thermal conductivity; TPS; Pore size distribution; MICRO-POROUS LAYER; GAS-DIFFUSION LAYERS; TRANSPORT; RECONSTRUCTION; MPL;
D O I
10.1016/j.jpowsour.2015.07.054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new compact relationship is developed for the thermal conductivity of the microporous layer (MPL) used in polymer electrolyte fuel cells as a function of pore size distribution, porosity, and compression pressure. The proposed model is successfully validated against experimental data obtained from a transient plane source thermal constants analyzer. The thermal conductivities of carbon paper samples with and without MPL were measured as a function of load (1-6 bars) and the MPL thermal conductivity was found between 0.13 and 0.17 W m(-1) K-1. The proposed analytical model predicts the experimental thermal conductivities within 5%. A correlation generated from the analytical model was used in a multi objective genetic algorithm to predict the pore size distribution and porosity for an MPL with optimized thermal conductivity and mass diffusivity. The results suggest that an optimized MPL, in terms of heat and mass transfer coefficients, has an average pore size of 122 nm and 63% porosity. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 50 条
  • [21] Electrical Conductivity Influence on Eddy-Current Losses: Analytical Study and Experimental Validation
    Plait, Antony
    Dubas, Frederic
    2021 24TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2021), 2021, : 554 - 557
  • [22] Thermal conductivity of metallic hollow sphere structures: An experimental, analytical and comparative study
    Solorzano, E.
    Rodriguez-Perez, M. A.
    de Saja, J. A.
    MATERIALS LETTERS, 2009, 63 (13-14) : 1128 - 1130
  • [23] Effect of Nano-Coating on the Thermal Conductivity of Microporous Thermal Insulations
    Lee, Dong-Bok
    Misture, Scott
    Kwon, Hyuk-Chon
    Kwon, Young-Pil
    Park, Sung
    Lee, Jae Chun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (03) : 1119 - 1122
  • [24] Thermal conductivity of interfacial layers in nanofluids
    Liang, Zhi
    Tsai, Hai-Lung
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [25] Thermal conductivity of doped polysilicon layers
    McConnell, AD
    Uma, S
    Goodson, KE
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2001, 10 (03) : 360 - 369
  • [26] Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells: Part 2-Analytical modeling
    Ahadi, Mohammad
    Putz, Andreas
    Stumper, Jurgen
    Bahrami, Majid
    JOURNAL OF POWER SOURCES, 2017, 354 : 215 - 228
  • [27] Experimental modeling and measurement of thermal conductivity of sediments containing methane hydrates
    Duchkov, A. D.
    Manakov, A. Yu.
    Kazantsev, S. A.
    Permyakov, M. E.
    Ogienko, A. G.
    DOKLADY EARTH SCIENCES, 2006, 409 (05) : 732 - 735
  • [28] Analysis on Thermal Conductivity of Graphite/Al Composite by Experimental and Modeling Study
    Xue, C.
    Bai, H.
    Tao, P. F.
    Jiang, N.
    Wang, S. L.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (01) : 327 - 334
  • [29] Experimental modeling and measurement of thermal conductivity of sediments containing methane hydrates
    A. D. Duchkov
    A. Yu. Manakov
    S. A. Kazantsev
    M. E. Permyakov
    A. G. Ogienko
    Doklady Earth Sciences, 2006, 409 : 732 - 735
  • [30] Analysis on Thermal Conductivity of Graphite/Al Composite by Experimental and Modeling Study
    C. Xue
    H. Bai
    P. F. Tao
    N. Jiang
    S. L. Wang
    Journal of Materials Engineering and Performance, 2017, 26 : 327 - 334