On a generalized proximal point method for solving equilibrium problems in Banach spaces

被引:31
作者
Burachik, Regina [1 ]
Kassay, Gabor [2 ]
机构
[1] Univ S Australia, Sch Math & Stat, Adelaide, SA 5095, Australia
[2] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
Bregman function; Equilibrium problem; Normalized duality mapping; Proximal point algorithm; Regularization method; Totally convex function; MINIMIZATION ALGORITHM;
D O I
10.1016/j.na.2012.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a regularized equilibrium problem in Banach spaces, involving generalized Received 14 April 2012 Bregman functions. For this regularized problem, we establish the existence and Accepted 20 July 2012 uniqueness of solutions. These regularizations yield a proximal-like method for solving equilibrium problems in Banach spaces. We prove that the proximal sequence is an asymptotically solving sequence when the dual space is uniformly convex. Moreover, we MSC: prove that all weak accumulation points are solutions if the equilibrium function is lower semicontinuous in its first variable. We prove, under additional assumptions, that the proximal sequence converges weakly to a solution. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6456 / 6464
页数:9
相关论文
共 42 条
[1]  
[Anonymous], 1997, Parallel Optimization: Theory, Algorithms, and Applications
[2]  
Barbu V., 2010, MONOGR MATH
[3]   Coercivity conditions for equilibrium problems [J].
Bianchi, M ;
Pini, R .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (01) :79-92
[4]   A note on equilibrium problems with properly quasimonotone bifunctions [J].
Bianchi, M ;
Pini, R .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 20 (01) :67-76
[5]   Generalized monotone bifunctions and equilibrium problems [J].
Bianchi, M ;
Schaible, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (01) :31-43
[6]   A dual view of equilibrium problems [J].
Bigi, Giancarlo ;
Castellani, Marco ;
Kassay, Gabor .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) :17-26
[7]  
Blum E., 1994, Math. Stud., V63, P127
[8]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[9]   A proximal point method for the variational inequality problem in Banach spaces [J].
Burachik, RS ;
Scheimberg, S .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (05) :1633-1649
[10]   A generalized proximal point algorithm for the variational inequality problem in a Hilbert space [J].
Burachik, RS ;
Iusem, AN .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (01) :197-216