The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration

被引:167
作者
Villani, Linda A. [1 ]
Smith, Brennan K. [1 ]
Marcinko, Katarina [1 ]
Ford, Rebecca J. [1 ]
Broadfield, Lindsay A. [1 ]
Green, Alex E. [1 ]
Houde, Vanessa P. [2 ]
Muti, Paola [2 ]
Tsakiridis, Theodoros [2 ]
Steinberg, Gregory R. [1 ,3 ]
机构
[1] McMaster Univ, Dept Med, Hamilton, ON L8K 4P1, Canada
[2] McMaster Univ, Dept Oncol, Hamilton, ON L8K 4P1, Canada
[3] McMaster Univ, Dept Biochem & Biomed Sci, Hamilton, ON L8K 4P1, Canada
关键词
AMP-activated protein kinase AMPK; Lipogenesis; SGLT2; Prostate cancer; Lung cancer; Breast cancer; Colon cancer; mTOR; Cancer metabolism; Glucose uptake; ACTIVATED PROTEIN-KINASE; METFORMIN; AMPK; GROWTH; LIPOGENESIS; METABOLISM; MECHANISMS; EXPRESSION; BIGUANIDES; PROSTATE;
D O I
10.1016/j.molmet.2016.08.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: The sodium-glucose transporter 2 (SGLT2) inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate that SGLT2 inhibitors may inhibit the growth of some cancer cells but the mechanism(s) remain unclear. Methods: Cellular proliferation and clonogenic survival were used to assess the sensitivity of prostate and lung cancer cell growth to the SGLT2 inhibitors. Oxygen consumption, extracellular acidification rate, cellular ATP, glucose uptake, lipogenesis, and phosphorylation of AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase, and the p70S6 kinase were assessed. Overexpression of a protein that maintains complex-I supported mitochondrial respiration (NDI1) was used to establish the importance of this pathway for mediating the anti-proliferative effects of Canagliflozin. Results: Clinically achievable concentrations of Canagliflozin, but not Dapagliflozin, inhibit cellular proliferation and clonogenic survival of prostate and lung cancer cells alone and in combination with ionizing radiation and the chemotherapy Docetaxel. Canagliflozin reduced glucose uptake, mitochondrial complex-I supported respiration, ATP, and lipogenesis while increasing the activating phosphorylation of AMPK. The overexpression of NDI1 blocked the anti-proliferative effects of Canagliflozin indicating reductions in mitochondrial respiration are critical for anti-proliferative actions. Conclusion: These data indicate that like the biguanide metformin, Canagliflozin not only lowers blood glucose but also inhibits complex-I supported respiration and cellular proliferation in prostate and lung cancer cells. These observations support the initiation of studies evaluating the clinical efficacy of Canagliflozin on limiting tumorigenesis in pre-clinical animal models as well epidemiological studies on cancer incidence relative to other glucose lowering therapies in clinical populations. (C) 2016 The Author(s). Published by Elsevier GmbH.
引用
收藏
页码:1048 / 1056
页数:9
相关论文
共 39 条
[1]   Galactose Enhances Oxidative Metabolism and Reveals Mitochondrial Dysfunction in Human Primary Muscle Cells [J].
Aguer, Celine ;
Gambarotta, Daniela ;
Mailloux, Ryan J. ;
Moffat, Cynthia ;
Dent, Robert ;
McPherson, Ruth ;
Harper, Mary-Ellen .
PLOS ONE, 2011, 6 (12)
[2]   Targeting Cancer Cell Metabolism: The Combination of Metformin and 2-Deoxyglucose Induces p53-Dependent Apoptosis in Prostate Cancer Cells [J].
Ben Sahra, Issam ;
Laurent, Kathiane ;
Giuliano, Sandy ;
Larbret, Frederic ;
Ponzio, Gilles ;
Gounon, Pierre ;
Le Marchand-Brustel, Yannick ;
Giorgetti-Peraldi, Sophie ;
Cormont, Mireille ;
Bertolotto, Corine ;
Deckert, Marcel ;
Auberger, Patrick ;
Tanti, Jean-Francois ;
Bost, Frederic .
CANCER RESEARCH, 2010, 70 (06) :2465-2475
[3]   Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides [J].
Birsoy, Kivanc ;
Possemato, Richard ;
Lorbeer, Franziska K. ;
Bayraktar, Erol C. ;
Thiru, Prathapan ;
Yucel, Burcu ;
Wang, Tim ;
Chen, Walter W. ;
Clish, Clary B. ;
Sabatini, David M. .
NATURE, 2014, 508 (7494) :108-+
[4]  
Blessing A., 2012, J Cancer Sci Ther, V4, P306, DOI [10.4172/1948-5956.1000159, DOI 10.4172/1948-5956.1000159]
[5]   Thiazolidinediones, like metformin, inhibit respiratory complex I -: A common mechanism contributing to their antidiabetic actions? [J].
Brunmair, B ;
Staniek, K ;
Gras, F ;
Scharf, N ;
Althaym, A ;
Clara, R ;
Roden, M ;
Gnaiger, E ;
Nohl, H ;
Waldhäusl, W ;
Fürnsinn, C .
DIABETES, 2004, 53 (04) :1052-1059
[6]   AMPK β1 Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance [J].
Dzamko, Nicolas ;
van Denderen, Bryce J. W. ;
Hevener, Andrea L. ;
Jorgensen, Sebastian Beck ;
Honeyman, Jane ;
Galic, Sandra ;
Chen, Zhi-Ping ;
Watt, Matthew J. ;
Campbell, Duncan J. ;
Steinberg, Gregory R. ;
Kemp, Bruce E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (01) :115-122
[7]  
Effert P, 2004, ANTICANCER RES, V24, P3057
[8]   The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator [J].
Faubert, Brandon ;
Vincent, Emma E. ;
Poffenberger, Maya C. ;
Jones, Russell G. .
CANCER LETTERS, 2015, 356 (02) :165-170
[9]   AMPK Is a Negative Regulator of the Warburg Effect and Suppresses Tumor Growth In Vivo [J].
Faubert, Brandon ;
Boily, Gino ;
Izreig, Said ;
Griss, Takla ;
Samborska, Bozena ;
Dong, Zhifeng ;
Dupuy, Fanny ;
Chambers, Christopher ;
Fuerth, Benjamin J. ;
Viollet, Benoit ;
Mamer, Orval A. ;
Avizonis, Daina ;
DeBerardinis, Ralph J. ;
Siegel, Peter M. ;
Jones, Russell G. .
CELL METABOLISM, 2013, 17 (01) :113-124
[10]   Metformin: From Mechanisms of Action to Therapies [J].
Foretz, Marc ;
Guigas, Bruno ;
Bertrand, Luc ;
Pollak, Michael ;
Viollet, Benoit .
CELL METABOLISM, 2014, 20 (06) :953-966