Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes

被引:209
作者
Alessandri, Angelo [2 ]
Baglietto, Marco [1 ]
Battistelli, Giorgio [3 ]
机构
[1] Univ Genoa, DIST, Dept Commun Comp & Syst Sci, I-16145 Genoa, Italy
[2] Univ Genoa, DIPTEM, Dept Prod Engn Thermoenerget & Math Models, I-16129 Genoa, Italy
[3] Univ Florence, DSI, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
关键词
state estimation; moving horizon; discrete-time nonlinear systems; approximate solution;
D O I
10.1016/j.automatica.2007.11.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A moving-horizon state estimation problem is addressed for a class of nonlinear discrete-time systems with bounded noises acting on the system and measurement equations. As the statistics of such disturbances and of the initial state are assumed to be unknown, we use a generalized least-squares approach that consists in minimizing a quadratic estimation cost function defined on a recent batch of inputs and outputs according to a sliding-window strategy. For the resulting estimator, the existence of bounding sequences on the estimation error is proved. In the absence of noises, exponential convergence to zero is obtained. Moreover, suboptimal solutions are sought for which a certain error is admitted with respect to the optimal cost value. The approximate solution can be determined either on-line by directly minimizing the cost function or off-line by using a nonlinear parameterized function. Simulation results are presented to show the effectiveness of the proposed approach in comparison with the extended Kalman filter. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1753 / 1765
页数:13
相关论文
共 33 条
[1]   Further results on nonlinear receding-horizon observers [J].
Alamir, M ;
Calvillo-Corona, LA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) :1184-1188
[2]   Optimization based non-linear observers revisited [J].
Alamir, M .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (13) :1204-1217
[3]   Receding-horizon estimation for switching discrete-time linear systems [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1736-1748
[4]   Robust receding-horizon state estimation for uncertain discrete-time linear systems [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
SYSTEMS & CONTROL LETTERS, 2005, 54 (07) :627-643
[5]   On estimation error bounds for receding-horizon filters using quadratic boundedness [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (08) :1350-1355
[6]   Receding-horizon estimation for discrete-time linear systems [J].
Alessandri, A ;
Baglietto, M ;
Battistelli, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (03) :473-478
[7]   A neural state estimator with bounded errors for nonlinear systems [J].
Alessandri, A ;
Baglietto, M ;
Parisini, T ;
Zoppoli, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) :2028-2042
[8]   Neural approximators for nonlinear finite-memory state estimation [J].
Alessandri, A ;
Parisini, T ;
Zoppoli, R .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 67 (02) :275-301
[9]   Distributed-information neural control: The case of dynamic routing in traffic networks [J].
Baglietto, M ;
Parisini, T ;
Zoppoli, R .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (03) :485-502
[10]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945