Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases

被引:76
作者
Aschard, Hugues [1 ,2 ]
Chen, Jinbo [3 ]
Cornelis, Marilyn C. [4 ]
Chibnik, Lori B. [5 ]
Karlson, Elizabeth W. [6 ]
Kraft, Peter [1 ,2 ,7 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Program Mol & Genet Epidemiol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Univ Penn, Dept Biostat, Philadelphia, PA 19104 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Nutr, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Dept Neurol, Boston, MA 02115 USA
[6] Brigham & Womens Hosp, Dept Rheumatol Immunol & Allergy, Boston, MA 02115 USA
[7] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
GENOME-WIDE ASSOCIATION; BREAST-CANCER RISK; SINGLE-NUCLEOTIDE POLYMORPHISMS; RHEUMATOID-ARTHRITIS; DISCRIMINATORY ACCURACY; COMMON DISEASES; ROC CURVE; VARIANTS; MODELS; SUSCEPTIBILITY;
D O I
10.1016/j.ajhg.2012.04.017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies have identified hundreds of common genetic variants associated with the risk of multifactorial diseases. However, their impact on discrimination and risk prediction is limited. It has been suggested that the identification of gene-gene (G-G) and gene-environment (G-E) interactions would improve disease prediction and facilitate prevention. We conducted a simulation study to explore the potential improvement in discrimination if G-G and G-E interactions exist and are known. We used three diseases (breast cancer, type 2 diabetes, and rheumatoid arthritis) as motivating examples. We show that the inclusion of G-G and G-E interaction effects in risk-prediction models is unlikely to dramatically improve the discrimination ability of these models.
引用
收藏
页码:962 / 972
页数:11
相关论文
共 50 条
[31]   Information-theoretic gene-gene and gene-environment interaction analysis of quantitative traits [J].
Chanda, Pritam ;
Sucheston, Lara ;
Liu, Song ;
Zhang, Aidong ;
Ramanathan, Murali .
BMC GENOMICS, 2009, 10 :509
[32]   Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests [J].
Yu, Zhaoxia ;
Demetriou, Michael ;
Gillen, Daniel L. .
GENETIC EPIDEMIOLOGY, 2015, 39 (06) :446-455
[33]   Polymorphisms in Drug-Metabolizing Enzymes and Risk to Head and Neck Cancer: Evidence for Gene-Gene and Gene-Environment Interaction [J].
Maurya, Shailendra S. ;
Anand, Gautam ;
Dhawan, Ankur ;
Khan, Anwar J. ;
Jain, Swatantra K. ;
Pant, Mohan C. ;
Parmar, Devendra .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2014, 55 (02) :134-144
[34]   Environmental and Gene-Environment Interactions and Risk of Rheumatoid Arthritis [J].
Karlson, Elizabeth W. ;
Deane, Kevin .
RHEUMATIC DISEASE CLINICS OF NORTH AMERICA, 2012, 38 (02) :405-+
[35]   Powerful Set-Based Gene-Environment Interaction Testing Framework for Complex Diseases [J].
Jiao, Shuo ;
Peters, Ulrike ;
Berndt, Sonja ;
Bezieau, Stephane ;
Brenner, Hermann ;
Campbell, Peter T. ;
Chan, Andrew T. ;
Chang-Claude, Jenny ;
Lemire, Mathieu ;
Newcomb, Polly A. ;
Potter, John D. ;
Slattery, Martha L. ;
Woods, Michael O. ;
Hsu, Li .
GENETIC EPIDEMIOLOGY, 2015, 39 (08) :609-618
[36]   Gene-environment interactions in asthma and allergic diseases: Challenges and perspectives [J].
Kauffmann, Francine ;
Demenais, Florence .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2012, 130 (06) :1229-1240
[37]   Semiparametric analysis of complex polygenic gene-environment interactions in case-control studies [J].
Stalder, Odile ;
Asher, Alex ;
Liang, Liang ;
Carroll, Raymond J. ;
Ma, Yanyuan ;
Chatterjee, Nilanjan .
BIOMETRIKA, 2017, 104 (04) :801-812
[38]   Candidate gene-environment interactions in breast cancer [J].
Fletcher, Olivia ;
Dudbridge, Frank .
BMC MEDICINE, 2014, 12
[39]   Multiple Gene-Environment Interactions on the Angiogenesis Gene-Pathway Impact Rectal Cancer Risk and Survival [J].
Sharafeldin, Noha ;
Slattery, Martha L. ;
Liu, Qi ;
Franco-Villalobos, Conrado ;
Caan, Bette J. ;
Potter, John D. ;
Yasui, Yutaka .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2017, 14 (10)
[40]   P2X3-P2X7 SNPs and gene-gene and gene-environment interactions on pediatric asthma [J].
Li, Lingxue ;
Wei, Bing ;
Jia, Jingjing ;
Li, Mo ;
Ren, Mengyang ;
Zhang, Shinan .
JOURNAL OF ASTHMA, 2023, 60 (07) :1438-1445