Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases

被引:75
|
作者
Aschard, Hugues [1 ,2 ]
Chen, Jinbo [3 ]
Cornelis, Marilyn C. [4 ]
Chibnik, Lori B. [5 ]
Karlson, Elizabeth W. [6 ]
Kraft, Peter [1 ,2 ,7 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Program Mol & Genet Epidemiol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[3] Univ Penn, Dept Biostat, Philadelphia, PA 19104 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Nutr, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Dept Neurol, Boston, MA 02115 USA
[6] Brigham & Womens Hosp, Dept Rheumatol Immunol & Allergy, Boston, MA 02115 USA
[7] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
关键词
GENOME-WIDE ASSOCIATION; BREAST-CANCER RISK; SINGLE-NUCLEOTIDE POLYMORPHISMS; RHEUMATOID-ARTHRITIS; DISCRIMINATORY ACCURACY; COMMON DISEASES; ROC CURVE; VARIANTS; MODELS; SUSCEPTIBILITY;
D O I
10.1016/j.ajhg.2012.04.017
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies have identified hundreds of common genetic variants associated with the risk of multifactorial diseases. However, their impact on discrimination and risk prediction is limited. It has been suggested that the identification of gene-gene (G-G) and gene-environment (G-E) interactions would improve disease prediction and facilitate prevention. We conducted a simulation study to explore the potential improvement in discrimination if G-G and G-E interactions exist and are known. We used three diseases (breast cancer, type 2 diabetes, and rheumatoid arthritis) as motivating examples. We show that the inclusion of G-G and G-E interaction effects in risk-prediction models is unlikely to dramatically improve the discrimination ability of these models.
引用
收藏
页码:962 / 972
页数:11
相关论文
共 50 条
  • [21] GMDR: Versatile Software for Detecting Gene-Gene and Gene-Environment Interactions Underlying Complex Traits
    Xu, Hai-Ming
    Xu, Li-Feng
    Hou, Ting-Ting
    Luo, Lin-Feng
    Chen, Guo-Bo
    Sun, Xi-Wei
    Lou, Xiang-Yang
    CURRENT GENOMICS, 2016, 17 (05) : 396 - 402
  • [22] Power of cellular automata for identifying gene-gene and gene-environment interactions
    Moore, JH
    Hahn, LW
    AMERICAN JOURNAL OF MEDICAL GENETICS, 2001, 105 (07): : 565 - 565
  • [23] Testing for Gene-Environment and Gene-Gene Interactions Under Monotonicity Constraints
    Han, Summer S.
    Rosenberg, Philip S.
    Chatterjee, Nilanjan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1441 - 1452
  • [24] Bayesian variable selection for hierarchical gene-environment and gene-gene interactions
    Liu, Changlu
    Ma, Jianzhong
    Amos, Christopher I.
    HUMAN GENETICS, 2015, 134 (01) : 23 - 36
  • [25] Gene-gene and gene-environment interactions on IgE production in prenatal stage
    Yang, K. D.
    Chang, J.-C.
    Chuang, H.
    Liang, H.-M.
    Kuo, H.-C.
    Lee, Y.-S.
    Hsu, T.-Y.
    Ou, C.-Y.
    ALLERGY, 2010, 65 (06) : 731 - 739
  • [26] Gene-gene and gene-environment interactions determine risk of thrombosis in families with inherited antithrombin deficiency
    van Boven, HH
    Vandenbroucke, JP
    Briët, E
    Rosendaal, FR
    BLOOD, 1999, 94 (08) : 2590 - 2594
  • [27] The Cumulative Effect of Gene-Gene and Gene-Environment Interactions on the Risk of Prostate Cancer in Chinese Men
    Liu, Ming
    Shi, Xiaohong
    Yang, Fan
    Wang, Jianye
    Xu, Yong
    Wei, Dong
    Yang, Kuo
    Zhang, Yaoguang
    Wang, Xin
    Liang, Siying
    Chen, Xin
    Sun, Liang
    Zhu, Xiaoquan
    Zhao, Chengxiao
    Zhu, Ling
    Tang, Lei
    Zheng, Chenguang
    Yang, Ze
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016, 13 (02):
  • [28] Entropy-Based Information Gain Approaches to Detect and to Characterize Gene-Gene and Gene-Environment Interactions/Correlations of Complex Diseases
    Fan, R.
    Zhong, M.
    Wang, S.
    Zhang, Y.
    Andrew, A.
    Karagas, M.
    Chen, H.
    Amos, C. I.
    Xiong, M.
    Moore, J. H.
    GENETIC EPIDEMIOLOGY, 2011, 35 (07) : 706 - 721
  • [29] Gene-gene and gene-environment interaction in coronary artery disease risk
    Sousa, F.
    Mendonca, M., I
    Sa, D.
    Abreu, G.
    Henriques, E.
    Rodrigues, M.
    Freitas, S.
    Borges, S.
    Guerra, G.
    Drumond, A.
    Sousa, A. C.
    Dos Reis, R. Palma
    EUROPEAN HEART JOURNAL, 2024, 45
  • [30] Power of cellular automata for identifying gene-gene and gene-environment interactions.
    Moore, JH
    Hahn, LW
    AMERICAN JOURNAL OF HUMAN GENETICS, 2001, 69 (04) : 390 - 390