A gradient method for viscoelastic behaviour identification of damped sandwich structures

被引:14
|
作者
Elkhaldi, Imen [1 ]
Charpentier, Isabelle [1 ]
Daya, El Mostafa [1 ,2 ]
机构
[1] UMR CNRS 7239, Lab Etud Microstruct & Mecan Mat, F-57045 Metz 01, France
[2] Georgia Tech Lorraine, Unite Mixte Int UMI GT CNRS 2958, F-57070 Metz, France
来源
COMPTES RENDUS MECANIQUE | 2012年 / 340卷 / 08期
关键词
Vibrations; Sandwich structures; Viscoelastic model; Complex non-linear eigenvalue solver; Parameter identification; Gradient method; Automatic differentiation; ASYMPTOTIC NUMERICAL-METHOD; DESIGN; DIFFERENTIATION; SENSITIVITY;
D O I
10.1016/j.crme.2012.05.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The damping properties estimation assumes a viscoelastic model calibrated from experiments and simulations. This Note presents a gradient method for viscoelastic behaviour identification of damped sandwich structures devoted to the passive control of mechanical vibration. The method combines experimental data, numerical simulations realized with a complex non-linear eigenvalue solver using the asymptotic numerical method, and optimal control for the identification of viscoelastic parameters. An automatic differentiation tool is used to get numerical derivatives exact up to the machine precision with minimal user effort. Results are presented for a sandwich beam with a frequency dependent viscoelastic core. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:619 / 623
页数:5
相关论文
共 50 条
  • [31] Viscoelastic properties of steel/polymer/steel sandwich structures
    Bistac, S
    Vallat, MF
    Schultz, J
    MECHANICS OF SANDWICH STRUCTURES, 1998, : 281 - 286
  • [32] Acoustic Optimisation of FRP Sandwich Structures by Viscoelastic Interlayers
    Hopmann, Christian
    Preuss, Tobias
    CELLULAR POLYMERS, 2012, 31 (06) : 329 - 342
  • [33] Damping optimization of viscoelastic laminated sandwich composite structures
    Araujo, A. L.
    Martins, P.
    Soares, C. M. Mota
    Soares, C. A. Mota
    Herskovits, J.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2009, 39 (06) : 569 - 579
  • [34] FINITE ELEMENT ANALYSIS OF VISCOELASTIC CORE SANDWICH STRUCTURES
    Li, Xiaomin
    Watt, Dan
    TMS 2009 138TH ANNUAL MEETING & EXHIBITION - SUPPLEMENTAL PROCEEDINGS, VOL 3: GENERAL PAPER SELECTIONS, 2009, : 287 - 294
  • [35] A novel viscoelastic damping treatment for honeycomb sandwich structures
    Aumjaud, P.
    Smith, C. W.
    Evans, K. E.
    COMPOSITE STRUCTURES, 2015, 119 : 322 - 332
  • [36] MODELING AND IDENTIFICATION OF VISCOELASTIC PROPERTIES OF VIBRATING SANDWICH BEAMS
    LEKSZYCKI, T
    OLHOFF, N
    PEDERSEN, JJ
    COMPOSITE STRUCTURES, 1992, 22 (01) : 15 - 31
  • [37] Dynamic Identification of Classically Damped Uncertain Structures
    Lofrano, E.
    Paolone, A.
    Vasta, M.
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 131 - 142
  • [38] Improving the MSE method for damped structures
    Landi, FP
    Scarpa, F
    Rongong, JA
    Tomlinson, GR
    NOISE AND VIBRATION ENGINEERING, VOLS 1 - 3, PROCEEDINGS, 2001, : 317 - 324
  • [39] Modal analysis method for stiffness degradation identification of non-proportionally damped structures
    Yuan, Hong Ying
    Hirao, Kiyoshi
    Sawada, Tsutomu
    Nariyuki, Yoshifumi
    Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1994, (495 pt 1-2): : 51 - 54
  • [40] THE use of ANSYS to calculate the behaviour of sandwich structures
    Manet, V
    COMPOSITES SCIENCE AND TECHNOLOGY, 1998, 58 (12) : 1899 - 1905