Solvable subgroups of Out(Fn) are virtually Abelian

被引:24
作者
Bestvina, M
Feighn, M
Handel, M
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Rutgers State Univ, Dept Math, Newark, NJ 07102 USA
[3] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
基金
美国国家科学基金会;
关键词
free group; outer automorphism; solvable; relative train track;
D O I
10.1023/B:GEOM.0000022864.30278.34
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-n be the free group of rank n, let Aut(F-n) be its automorphism group and let Out(F-n) be its outer automorphism group. We show that every solvable subgroup of Out(F-n) has a finite index subgroup that is finitely generated and free Abelian. We also show that every Abelian subgroup of Out(F-n) has a finite index subgroup that lifts to Aut(F-n).
引用
收藏
页码:71 / 96
页数:26
相关论文
共 12 条
[1]   Translation lengths in Out(Fn) [J].
Alibegovic, E .
GEOMETRIAE DEDICATA, 2002, 92 (01) :87-93
[2]  
BASS HYMAN, 1992, CONT MATH, V169, P45
[3]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[4]   TRAIN TRACKS AND AUTOMORPHISMS OF FREE GROUPS [J].
BESTVINA, M ;
HANDEL, M .
ANNALS OF MATHEMATICS, 1992, 135 (01) :1-51
[5]  
BESTVINA M, 1996, TITS ALTERNATIVE OUT, V2
[6]   ABELIAN AND SOLVABLE SUBGROUPS OF THE MAPPING CLASS GROUP [J].
BIRMAN, JS ;
LUBOTZKY, A ;
MCCARTHY, J .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (04) :1107-1120
[7]  
CHARLAP LS, 1986, BIERBERBACH GROUPS F
[8]   AUTOMORPHISMS OF FREE GROUPS HAVE FINITELY GENERATED FIXED-POINT SETS [J].
COOPER, D .
JOURNAL OF ALGEBRA, 1987, 111 (02) :453-456
[9]   MODULI OF GRAPHS AND AUTOMORPHISMS OF FREE GROUPS [J].
CULLER, M ;
VOGTMANN, K .
INVENTIONES MATHEMATICAE, 1986, 84 (01) :91-119
[10]   GROUP-COMPLETIONS AND LIMIT-SETS OF KLEINIAN-GROUPS [J].
FLOYD, WJ .
INVENTIONES MATHEMATICAE, 1980, 57 (03) :205-218