STRONG CONVERGENCE OF PROJECTION METHODS FOR BREGMAN ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND EQUILIBRIUM PROBLEMS IN BANACH SPACES

被引:0
|
作者
Naraghirad, Eskandar [1 ]
Takahashi, Wataru [2 ,3 ,4 ]
Yao, Jen-Chih [5 ]
机构
[1] Univ Yasuj, Dept Math, Yasuj 75918, Iran
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Keio Univ, Keio Res & Educ Ctr Nat Sci, Tokyo 108, Japan
[4] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[5] Kaohsiung Med Univ, Ctr Gen Educ, Kaohsiung 807, Taiwan
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2014年 / 10卷 / 02期
基金
日本学术振兴会;
关键词
Bregman asymptotically quasi-nonexpansive mapping; Bregman function; uniformly convex function; uniformly smooth function; fixed point; strong convergence; MONOTONE OPERATORS; THEOREMS;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, using Bregman functions, we prove strong convergence theorems by the hybrid projection method for finding a common element of the set of fixed points of a Bregman asymptotically quasi-nonexpansive mapping and the set of solutions of an equilibrium problem in the framework of Banach spaces. The method is computationally described, and application to the equilibrium problem is demonstrated through an illustrative example. Our results improve and generalize many known results in the current literature.
引用
收藏
页码:321 / 342
页数:22
相关论文
共 50 条