Predicting the effect of competition on secondary plant extinctions in plant-pollinator networks

被引:5
作者
Bewick, Sharon [1 ]
Brosi, Berry J. [2 ]
Armsworth, Paul R. [1 ]
机构
[1] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Environm Studies, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
INTERSPECIFIC COMPETITION; MUTUALISTIC NETWORKS; POPULATION-DYNAMICS; COMMUNITIES; ARCHITECTURE; ROBUSTNESS; MECHANISMS; STABILITY; INCREASES; PATTERNS;
D O I
10.1111/j.1600-0706.2013.00016.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
What are the limitations of models that predict the behavior of an ecological community based on a single type of species interaction? Using plant-pollinator network models as an example, we contrast the predicted vulnerability of a community to secondary extinctions under the assumption of purely mutualistic interactions versus mutualistic and competitive interactions. We find that competition among plant species increases the risk of secondary extinctions and extinction cascades. Simulations over a number of different network structures indicate that this effect is stronger in larger networks, more strongly connected networks and networks with higher plant:pollinator ratios. We conclude that efforts to model plant-pollinator communities will systematically over-estimate community robustness to species loss if plant competition is ignored. However, because the effect of plant competition depends on network architecture, and because characterization of plant competition is work intensive, we suggest that efforts to account for plant competition in plant-pollinator network models should be focused on large, strongly connected networks with high plant:pollinator ratios.
引用
收藏
页码:1710 / 1719
页数:10
相关论文
共 43 条
[1]   The Role of Asymmetric Interactions on the Effect of Habitat Destruction in Mutualistic Networks [J].
Abramson, Guillermo ;
Trejo Soto, Claudia A. ;
Ona, Leonardo .
PLOS ONE, 2011, 6 (06)
[2]   Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks [J].
Aerts, R .
JOURNAL OF EXPERIMENTAL BOTANY, 1999, 50 (330) :29-37
[3]   COMMUNITY STUDIES IN POLLINATION ECOLOGY IN THE HIGH TEMPERATE ANDES OF CENTRAL CHILE .1. POLLINATION MECHANISMS AND ALTITUDINAL VARIATION [J].
ARROYO, MTK ;
PRIMACK, R ;
ARMESTO, J .
AMERICAN JOURNAL OF BOTANY, 1982, 69 (01) :82-97
[4]   Asymmetric coevolutionary networks facilitate biodiversity maintenance [J].
Bascompte, J ;
Jordano, P ;
Olesen, JM .
SCIENCE, 2006, 312 (5772) :431-433
[5]   The nested assembly of plant-animal mutualistic networks [J].
Bascompte, J ;
Jordano, P ;
Melián, CJ ;
Olesen, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (16) :9383-9387
[6]   Plant-animal mutualistic networks: The architecture of biodiversity [J].
Bascompte, Jordi ;
Jordano, Pedro .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2007, 38 :567-593
[7]   The assembly and disassembly of ecological networks [J].
Bascompte, Jordi ;
Stouffer, Daniel B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 364 (1524) :1781-1787
[8]   The architecture of mutualistic networks minimizes competition and increases biodiversity [J].
Bastolla, Ugo ;
Fortuna, Miguel A. ;
Pascual-Garcia, Alberto ;
Ferrera, Antonio ;
Luque, Bartolo ;
Bascompte, Jordi .
NATURE, 2009, 458 (7241) :1018-U91
[9]   Population Dynamics of Plant and Pollinator Communities: Stability Reconsidered [J].
Benadi, Gita ;
Bluethgen, Nico ;
Hovestadt, Thomas ;
Poethke, Hans-Joachim .
AMERICAN NATURALIST, 2012, 179 (02) :157-168