Binomial theorem involving Hermite polynomials and negative-binomial theorem involving Laguerre polynomials

被引:8
作者
Fan Hong-Yi [1 ]
Lou Sen-Yue [1 ]
Pan Xiao-Yin [1 ]
Da Cheng [2 ]
机构
[1] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum mechanics; Hermite polynoms; binomial theorem; Laguerre polynomials; OPERATORS;
D O I
10.7498/aps.62.240301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an operator Hermite polynomial method, namely, we replace the arguments of the special function by quantum mechanical operators, and in this way we derive a binomial theorem involving Hermite polynomials and a negative-binomial theorem involving Laguerre polynomials. These two theorems will have essential applications in quantum optics calculations. This method is concise and helpful in deducing many operator identities, which may become a new branch in mathematical physics theory.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
Erdelyi A., 1953, Higher Transcendental Functions
[2]  
Fan H. Y., 2012, Representation and Transformation Theory in Quantum Mechanics-Progress of Diracs Symbolic Method
[3]  
Fan H Y, 2012, PHASE SPACE THEORY Q
[4]  
Fan H. Y., 2010, OPTICAL TRANSFORMATI
[5]  
Fan H. Y., 2008, DEV BASIS MATH PHYS
[6]  
Fan H Y, 2013, CHIN PHYS B, V22
[7]  
Fan H Y, 2012, ACTA PHYS SIN, V61
[8]   Two-variable hermite polynomials as time-evolutional transition amplit driven harmonic oscillator [J].
Fan, Hong-Yi ;
Jiang, Teng-Fei .
MODERN PHYSICS LETTERS B, 2007, 21 (08) :475-480
[9]  
FAN HY, 1985, COMMUN THEOR PHYS, V4, P181
[10]   Operator ordering in quantum optics theory and the development of Dirac's symbolic method [J].
Fan, HY .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (04) :R147-R163