Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation

被引:205
作者
Shi, Kaibo [1 ,2 ]
Tang, Yuanyan [2 ]
Liu, Xinzhi [3 ]
Zhong, Shouming [4 ]
机构
[1] Chengdu Univ, Sch Informat Sci & Engn, Chengdu 610106, Peoples R China
[2] Univ Macau, Fac Sci & Technol, Dept Comp & Informat Sci, Taipa 853, Macao, Peoples R China
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaotic Lurie system; Neural networks; Robust synchronization; Non-fragile sampled-data control; Randomly occurring controller gain fluctuation; MASTER-SLAVE SYNCHRONIZATION; COMPLEX DYNAMICAL NETWORKS; OUTPUT-FEEDBACK CONTROL; NEURAL-NETWORKS; EXPONENTIAL SYNCHRONIZATION; ASYMPTOTICAL SYNCHRONIZATION; STABILITY ANALYSIS; LINEAR-SYSTEMS; STABILIZATION; CRITERIA;
D O I
10.1016/j.isatra.2016.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new non-fragile stochastic control method to investigate the robust sampled-data synchronization problem for uncertain chaotic Lurie systems (CLSs) with time-varying delays. The controller gain fluctuation and time-varying uncertain parameters are supposed to be random and satisfy certain Bernoulli distributed white noise sequences. Moreover, by choosing an appropriate Lyapunov-Krasovskii functional (LKF), which takes full advantage of the available information about the actual sampling pattern and the nonlinear condition, a novel synchronization criterion is developed for analyzing the corresponding synchronization error system. Furthermore, based on the most powerful free matrix-based integral inequality (FMBII), the desired non-fragile sampled-data estimator controller is obtained in terms of the solution of linear matrix inequalities. Finally, three numerical simulation examples of Chua's circuit and neural network are provided to show the effectiveness and superiorities of the proposed theoretical results. (C) 2016 ISA. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 199
页数:15
相关论文
共 49 条
[1]   Global exponential synchronization of nonlinear time-delay Lur'e systems via delayed impulsive control [J].
Chen, Wu-Hua ;
Wei, Dan ;
Lu, Xiaomei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :3298-3312
[2]   On Sampled-Data Control for Master-Slave Synchronization of Chaotic Lur'e Systems [J].
Chen, Wu-Hua ;
Wang, Zipeng ;
Lu, Xiaomei .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (08) :515-519
[3]   Robust sampled-data stabilization of linear systems: an input delay approach [J].
Fridman, E ;
Seuret, A ;
Richard, JP .
AUTOMATICA, 2004, 40 (08) :1441-1446
[4]   A refined input delay approach to sampled-data control [J].
Fridman, Emilia .
AUTOMATICA, 2010, 46 (02) :421-427
[5]   Robust Sampled-Data H∞ Control for Vehicle Active Suspension Systems [J].
Gao, Huijun ;
Sun, Weichao ;
Shi, Peng .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2010, 18 (01) :238-245
[6]   Improved stability criteria for synchronization of chaotic Lur'e systems using sampled-data control [J].
Ge, Chao ;
Zhang, Weiwei ;
Li, Wei ;
Sun, Xiaochuan .
NEUROCOMPUTING, 2015, 151 :215-222
[7]   New globally asymptotical synchronization of chaotic systems under sampled-data controller [J].
Ge, Chao ;
Li, Zhigang ;
Huang, Xiaohong ;
Shi, Caijuan .
NONLINEAR DYNAMICS, 2014, 78 (04) :2409-2419
[8]   Master-slave synchronization criteria of Lur'e systems with time-delay feedback control [J].
Ge, Chao ;
Hua, Changchun ;
Guan, Xinping .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 :895-902
[9]   On designing time-varying delay feedback controllers for master-slave synchronization of Lur'e systems [J].
Han, Qing-Long .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (07) :1573-1583
[10]   Synchronization Error Estimation and Controller Design for Delayed Lur'e Systems With Parameter Mismatches [J].
He, Wangli ;
Qian, Feng ;
Han, Qing-Long ;
Cao, Jinde .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (10) :1551-1563